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When we run LMNN, we are learning a distance metric L. Here I will use the notation L where LTL =
M as in the original paper. Given some dataset X made up of points {x0, x1, . . . , xn} with labels y =
{y0, y1, . . . , yn}. We also have a parameter k specified by the user (this is the number of neighbors).

At each step of the optimization, we must calculate the k nearest neighbors of each point xi. We need k
points of the same label (targets), and k points of another label (impostors).

However, if L does not change significantly, then the k nearest impostors are not likely to change.
Therefore, we wish to find some bounds that will show us when we do not need to recalculate the impostors.

Let us consider that we have the following quantities:

• xi: the query point

• xa: the k-th nearest impostor to xi

• xb: any other impostor not in the top k for xi

• Lt: the L transformation matrix at iteration t

• Lt+1: the L transformation matrix at iteration t+ 1

We also know the following quantities:

• dLt
(xi, xa)

• dLt
(xi, xb)

• dLt+1(xi, xa)

• dLt+1(xi, xb)

Let’s assume that

dLt+1(xi, xa) < dLt+1(xi, xb). (1)

This would mean that we do not need to recalculate impostors the following iteration. Starting with this
assumption, we can rework the expression by plugging L into the arguments of the distance function:

dLt+1(xi, xb) = d(Lt+1xi, Lt+1xb). (2)

Then, we can use the reverse triangle inequality to bound the distance from below. Note that the two
terms on the right hand side of the reverse triangle inequality could actually be reversed. We’ll come back
to that later.

d(Lt+1xi, Lt+1xb) ≥ d(Ltxi, Lt+1xb)− d(Ltxi, Lt+1xi) (3)
≥ d(Ltxi, Ltxb)− d(Ltxb, Lt+1xb)− d(Ltxi, Lt+1xi). (4)

Similarly, we can bound the distance from above for the other side of the conditional with the triangle
inequality.
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d(Lt+1xi, Lt+1xa) ≤ d(Ltxi, Lt+1xa) + d(Ltxi, Lt+1xi) (5)
≤ d(Ltxi, Ltxa) + d(Ltxa, Lt+1xa) + d(Ltxi, Lt+1xi). (6)

It would be expensive to calculate the exact distance d(Ltxi, Lt+1xi), but we could express this differently.

d(Ltxi, Lt+1xi) = (Ltxi − Lt+1xi)
T (Ltxi − Lt+1xi) (7)

= xT
i (Lt − Lt+1)

T (Lt − Lt+1)xi (8)
= xT

i ‖Lt − Lt+1‖2Fxi (9)
= ‖Lt − Lt+1‖2F ‖xi‖2. (10)

Now we may plug this back in to our original conditional along with the other bounds:

dLt+1(xi, xa) < dLt+1(xi, xb) (11)
dLt(xi, xa) + ‖Lt − Lt+1‖2F (‖xi‖2 + ‖xa‖2) < dLt(xi, xb)− ‖Lt − Lt+1‖2F (‖xi‖2 + ‖xb‖2) (12)
‖Lt − Lt+1‖2F (2‖xi‖2 + ‖xa‖2 + ‖xb‖2) < dLt(xi, xb)− dLt(xi, xa). (13)

We can use this final result. If we cache dLt(xi, xa) and dLt(xi, xb), as well as ‖xi‖2∀xi, we need only
calculate ‖Lt − Lt+1‖2F at each iteration, and we can then quickly check to see if the condition is violated
for each query point pi. There are a few options for how it could be used:

• Check each query point individually, in order to assemble a smaller query set for the nearest neighbor
search.

• Check all points and just run the search if the condition is violated for any point pi.

Which of those strategies is better to use will depend on how often the bounds are typically violated
with different optimizers. Also, note that the bound itself is dependent on the squared norm of the points
‖xi‖2. This means that it would be wise to mean-center the points, which will reduce the norms ‖xi‖2 but
not change the nearest neighbor search results. (In fact, if the authors are suggesting to perform PCA before
the LMNN process, typically we will get centered points as a result anyway.)
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