
Dual-Tree Fast Exact Max-Kernel Search

Ryan R. Curtin and Parikshit Ram

December 11, 2013

Abstract

The problem of max-kernel search arises everywhere: given a query point pq, a set of reference objects Sr

and some kernel K, find arg maxpr∈Sr
K(pq, pr). Max-kernel search is ubiquitous and appears in countless

domains of science, thanks to the wide applicability of kernels. A few domains include image matching,
information retrieval, bio-informatics, similarity search, and collaborative filtering (to name just a few).
However, there are no generalized techniques for efficiently solving max-kernel search. This paper presents
a single-tree algorithm called single-tree FastMKS which returns the max-kernel solution for a single query
point in provably O(logN) time (where N is the number of reference objects), and also a dual-tree algorithm
(dual-tree FastMKS) which is useful for max-kernel search with many query points. If the set of query points
is of size O(N), this algorithm returns a solution in provably O(N) time, which is significantly better than
the O(N2) linear scan solution; these bounds are dependent on the expansion constant of the data. These
algorithms work for abstract objects, as they do not require explicit representation of the points in kernel
space. Empirical results for a variety of datasets show up to 5 orders of magnitude speedup in some cases. In
addition, we present approximate extensions of the FastMKS algorithms that can achieve further speedups.

1 Max-kernel search

One particularly ubiquitous problem in computer sci-
ence is that of max-kernel search: for a given set Sr
of N objects (the reference set), a similarity function
K(·, ·), and a query object pq, find the object pr ∈ R
such that

pr = arg max
p∈Sr

K(pq, p). (1)

Often, max-kernel search is performed for a large
set of query objects Sq.

The most simple approach to this general problem
is a linear scan over all the objects in Sr. However,
the computational cost of this approach scales lin-
early with the size of the reference set for a single
query, making it computationally prohibitive for large
datasets. If |Sq| = |Sr| = O(N), then this approach
scales as O(N2); thus, the approach quickly becomes
infeasible for large N .

In our setting we restrict the similarity function
K(·, ·) to be a Mercer kernel. As we will see, this
is not very restrictive. A Mercer kernel is a positive
semidefinite kernel function; these can be expressed
as an inner product in some Hilbert space H:

K(x, y) = 〈ϕ(x), ϕ(y)〉H. (2)

Figure 1: Matching images: an example of max-
kernel search.

Often, in practice, the space H is unknown; thus,
the mapping of x to H (ϕ(x)) for any object x is not
known. Fortunately, we do not need to know ϕ be-
cause of the renowned “kernel trick”—the ability to
evaluate inner products between any pair of objects
in the space H without requiring the explicit repre-
sentations of those objects.

Because Mercer kernels do not require explicit rep-
resentations in H, they are ubiquitous and can be
devised for any new class of objects, such as images
and documents (which can be considered as points
in RD), to more abstract objects like strings (protein
sequences [42], text), graphs (molecules [10], brain

1

neuron activation paths), and time series (music, fi-
nancial data) [51].

As we mentioned, the max-kernel search problem
appears everywhere in computer science and related
applications. The widely studied problem of image
matching in computer vision is an instance of max-
kernel search (Figure 1 presents a simple example).
The size of the image sets is continually growing, ren-
dering linear scan computationally prohibitive. Max-
kernel search also appears in maximum a posteriori
inference [33] as well as collaborative filtering via the
widely successful matrix factorization framework [35].
This matrix factorization obtains an accurate repre-
sentation of the data in terms of user vectors and item
vectors, and the desired result—the user preference
of an item—is the inner product between the two re-
spective vectors (this is a Mercer kernel). With ever-
scaling item sets and millions of users [20], efficient re-
trieval of recommendations (which is also max-kernel
search) is critical for real-world systems.

Finding similar protein/DNA sequences for a query
sequence from a large set of biological sequences is
also an instance of max-kernel search with biolog-
ical sequences as the objects and various domain-
specific kernels (for example, the p-spectrum kernel
[42], the maximal segment match score [1] and the
Smith-Waterman alignment score [60]1).

An efficient max-kernel search algorithm can be di-
rectly applied to biological sequence matching. The
field of document retrieval—and information retrieval
in general—can be easily seen to be an instance of
max-kernel search: for some given similarity function,
return the document that is most similar to the query.
Spell checking systems are an interesting corollary of
information retrieval and also an instance of max-
kernel search [27].

A special case of max-kernel search is the problem
of nearest neighbor search in metric spaces. In this
problem, the closest object to the query with respect
to a distance metric is sought. The requirement of
a distance metric allows numerous efficient methods
for exact and approximate nearest neighbor search,
including searches based on space partitioning trees
[23, 5, 62, 43, 58, 50] and other types of data struc-
tures [2, 14, 36, 15]. However, none of these numerous
algorithms are suitable for solving generalized max-
kernel search, which is the problem we are consider-
ing.

Given the wide applicability of kernels, it is de-
sirable to have a general method for efficient max-
kernel search that is applicable to any class of ob-
jects and corresponding Mercer kernels. To this end,

1These functions provide matching scores for pairs of se-
quences and can easily be shown to be Mercer kernels.

we present a method to accelerate exact max-kernel
search for any general class of objects and correspond-
ing Mercer kernels. The specific contributions of this
document (which is an extension of a previous work
[18]) are listed below.

• The first concept for characterizing the hardness
of max-kernel search in terms of the concentration
of the kernel values in any direction: the direc-
tional concentration.

• An O(N logN) algorithm to index any set of N
objects directly in the Hilbert space defined by the
kernel without requiring explicit representations
of the objects in this space.

• Novel single-tree and dual-tree branch-and-bound
algorithms on the Hilbert space indexing, which
can achieve orders of magnitude speedups over lin-
ear search.

• Value-approximate, order-approximate, and rank-
approximate extensions to the exact max-kernel
search algorithms.

• An O(logN) runtime bound for exact max-kernel
search for one query with our proposed single-tree
algorithm for any Mercer kernel.

• An O(N) runtime bound for exact max-kernel
search for O(N) queries with our proposed dual-
tree algorithm for any Mercer kernel.

1.1 Related work

Although there are existing techniques for max-
kernel search, almost all of them solve the approx-
imate search problem under restricted settings. The
most common assumption is that the objects are in
some metric space and the kernel function is shift-
invariant—a monotonic function of the distance be-
tween the two objects (K(p, q) = f(‖p− q‖)). One
example is the Gaussian radial basis function (RBF)
kernel.

For shift-invariant kernels, a tree-based recursive
algorithm has been shown to scale to large datasets
for maximum a posteriori inference [33]. However,
a shift-invariant kernel is only applicable to objects
already represented in some metric space. In fact,
max-kernel search with a shift-invariant kernel is
equivalent to nearest neighbor search in the input
space itself, and can be solved directly using existing
methods for nearest neighbor search—an easier and
better-studied problem. For shift-invariant kernels,
the points can be explicitly embedded in some low-
dimensional metric space such that the inner prod-
uct between these representations of any two points
approximates their corresponding kernel value [55].
This step takes O(ND2) time for Sr ⊂ RD and can

2

be followed by nearest neighbor search on these rep-
resentations to obtain results for max-kernel search
in the setting of a shift-invariant kernel.

This technique of obtaining the explicit embedding
of objects in some low-dimensional metric space while
approximating the kernel function can also be ap-
plied to dot-product kernels [30]. Dot-product ker-
nels produce kernel values between any pair of points
by operating a monotonic non-decreasing function on
their mutual dot-product (K(x, y) = f(〈x, y〉)). Lin-
ear and polynomial kernels are simple examples of
dot-product kernels. However, this is only applica-
ble to objects which already are represented in some
vector space which allows the computation of the dot-
products.

Locality-sensitive hashing (LSH) [24] is widely used
for image matching, but only with explicitly repre-
sentable kernel functions that admit a locality sensi-
tive hashing function [13]2. Kulis and Grauman [37]
apply LSH to solve max-kernel search approximately
for normalized kernels without any explicit represen-
tation. Normalized kernels restrict the self-similarity
value to a constant (K(x, x) = K(y, y) ∀ x, y ∈ S).
The preprocessing time for this locality sensitive
hashing is O(p3) and a single query requires O(p)
kernel evaluations. Here p controls the accuracy of
the algorithm—larger p implies better approxima-
tion; the suggested value for p is O(

√
N) with no

rigorous approximation guarantees.
A recent work [56] proposed the first technique for

exact max-kernel search using a tree-based branch-
and-bound algorithm, but is restricted only to linear
kernels and the algorithm does not have any runtime
guarantees. The authors suggest a method for ex-
tending their algorithm to non-representable spaces
with general Mercer kernels, but this requires O(N2)
preprocessing time.

There has also been recent interest in similarity
search with Bregman divergences [11], which are non-
metrics. Bregman divergences are not directly com-
parable to kernels, though; they are harder to work
with because they are not symmetric like kernels, and
are also not as generally applicable to any class of
objects as kernel functions. In this paper, we do not
address this form of similarity search; Bregman di-
vergences are not Mercer kernels.

1.2 Unnormalized kernels

Some kernels used in machine learning are normal-
ized (K(x, x) = K(y, y) ∀ x, y); examples include the
Gaussian and the cosine kernel. As we have discussed,

2The Gaussian and cosine kernels admit locality sensitive
hashing functions with some modifications.

there already exist techniques to solve the max-kernel
search problem with normalized kernels.

However, many common kernels like the linear
kernel (K(x, y) = xT y) and the polynomial kernels
(K(x, y) = (α + xT y)d) for some offset α and degree
d) are not normalized. Many applications require un-
normalized kernels:

• In the retrieval of recommendations, the normal-
ized linear kernel will result in inaccurate user-
item preference scores.

• In biological sequence matching with domain-
specific matching functions, K(x, x) implicitly
corresponds to the presence of genetically valu-
able letters (such as W, H, or P) or not valuable
letters (such as X)3 in the sequence x. This cru-
cial information is lost in kernel normalization.

Therefore, this paper considers unnormalized ker-
nels. No existing techniques consider un-normalized
kernels, and thus no existing techniques can be di-
rectly applied to every instance of max-kernel search
with general Mercer kernels and any class of objects
(Equation 1). Moreover, almost all existing tech-
niques resort to approximate solutions. Not only do
our algorithms work for general Mercer kernels in-
stead of just normalized or shift-invariant kernels, but
they also provide exact solutions; in addition, exten-
sions to our algorithms for approximation are trivial,
and for both the exact and approximate algorithms,
we can give asymptotic preprocessing and runtime
bounds, as well as rigorous accuracy guarantees for
approximate max-kernel searches.

2 Speedups via trees

The introduction of the quad tree in 1974 [21] and kd-
tree in 1975 [5] for use in nearest neighbor search [22],
range search [7], and minimum spanning tree calcula-
tion [6] paved the way for numerous algorithms that
took advantage of the triangle inequality to eliminate
unnecessary calculations.

A tree (or space tree) is a hierarchical structure
where each node in the tree corresponds to a certain
subset of the dataset it is built on [17]. For a kd-
tree, this subset is a hyperrectangle. In the context
of a problem such as nearest neighbor search, the
triangle inequality can be used to place bounds on the
minimum and maximum distances between a point
pq and a node Nr: dmin(pq,Nr) and dmax(pq,Nr),

3See the score matrix for letter pairs in protein sequences at
http://www.ncbi.nlm.nih.gov/Class/FieldGuide/BLOSUM62.

txt.

3

http://www.ncbi.nlm.nih.gov/Class/FieldGuide/BLOSUM62.txt
http://www.ncbi.nlm.nih.gov/Class/FieldGuide/BLOSUM62.txt

Nr

pq
dmin(pq,Nr)

dmax(pq,Nr)

Figure 2: dmin(pq,Nr) and dmax(pq,Nr) in R2.

respectively. An example of this bounding can be
seen in Figure 2. These bounds, then, can be used
to prune nodes in the tree, reducing the number of
distance computations necessary to find the solution.
For instance, in the case of range searching, a node
can be pruned if the range [dmin(q,Nr), dmax(q,Nr)]
does not overlap with the desired range—in that case,
there can be no points in Nr that are in the desired
distance range to the query point q. For a better
review of this type of approach, see [6] and [17].

Later years saw the introduction of numerous
other types of trees: oct-trees [29], metric trees [62],
vantage-point trees [64], random projection trees [19],
spill trees [43], cover trees [8], cone trees [56]—to
name just a few.

Trees have been applied to a variety of problems,
in addition to nearest neighbor search, range search,
and minimum spanning tree calculation. These prob-
lems include approximate nearest neighbor search [2],
Gaussian summation [39], particle smoothing [33],
Gaussian process regression [59], clustering [34], fea-
ture subset selection [52], and mixture model training
[48]. More recently, Gray and Moore proposed us-
ing a second tree for problems with large query sets
[25], such as all-nearest-neighbors and density estima-
tion [26]. This dual-tree approach was then applied
to numerous problems: singular value decomposition
[28], n-point correlation estimates in astronomy [45],
mean shift [63], kernel summation [39, 41, 40], rank-
approximate nearest neighbor search [58], and min-
imum spanning tree calculation [46], as well as nu-
merous others.

The use of a hierarchical space-partitioning ap-
proach such as the kd-tree gives large speedups. For
instance, nearest neighbor search for a single query
point with a kd-tree runs in expected O(logN) time
(where N is the number of points in the dataset), as
opposed to O(N) time for linear scan. Similar re-
sults can be shown for other trees and other tasks.
The cover tree [8], a more recent tree structure, can
be shown to have a worst-time bound of O(logN)

for single-query nearest neighbor search [8] and a to-
tal all-nearest-neighbors runtime that scales as O(N)
[57]. This is a huge improvement over the linear scan
all-nearest-neighbors runtime of O(N2). Similar run-
time bound results have been shown for some dual-
tree algorithms when cover trees are chosen as the
tree type [58, 45, 46].

These results from the literature make the use
of trees an attractive option for solving max-kernel
search. Importantly, trees only require a single con-
struction. Thus, we can re-use trees for multiple tasks
and amortize the cost of construction over many runs
of an algorithm. In addition, once a tree has been
constructed, point insertions and deletions are gener-
ally cheap. However, as we mentioned earlier, the nu-
merous existing nearest-neighbor search approaches
using trees [50, 5, 8] all require a distance metric.
In general, a Mercer kernel K(·, ·) is not a distance
metric—so we must find a novel approach.

3 Analysis of the problem

Remember that a Mercer kernel implies that the ker-
nel value for a pair of objects (x, y) corresponds to
an inner product between the vector representation
of the objects (ϕ(x), ϕ(y)) in some Hilbert space H
(see Equation 2). Hence, every Mercer kernel induces
the following metric in H:

dK(x, y) = ‖ϕ(x)− ϕ(y)‖H
=

√
K(x, x) +K(y, y)− 2K(x, y). (3)

3.1 Reduction to nearest neighbor
search

In situations where max-kernel search can be reduced
to nearest neighbor search in H, nearest neighbor
search methods for general metrics [15] can be used
for efficient max-kernel search. This reduction is pos-
sible for normalized kernels. The nearest neighbor for
a query pq in H,

arg min
pr∈Sr

dK(pq, pr), (4)

is the max-kernel candidate (Equation 1) if K(·, ·)
is a normalized kernel. To see this, note that for
normalized kernels, K(pq, pq) = K(pr, pr) and thus,

dK(pq, pr) =
√

2c− 2K(pq, pr) (5)

where the normalization constant c = K(pq, pq) =
K(pr, pr) and is a constant not dependent on pq or

4

(a) Projection interval set. (b) Low value of γ. (c) High value of γ.

Figure 3: Concentration of projections.

pr. Therefore, dK(pq, pr) decreases as K(pq, pr) in-
creases, and so dK(·, ·) is minimized when K(·, ·) is
maximized. However, the two problems can have very
different answers with unnormalized kernels, because
dK(pq, pr) is not guaranteed to decrease as K(pq, pr)
increases. As we discussed earlier in Section 1.2, un-
normalized kernels are an important class of kernels
that we wish to consider. Thus, although a reduction
to nearest neighbor search is sometimes possible, it is
only under the strict condition of a normalized kernel.

3.2 Hardness of max-kernel search

Even if max-kernel search can be reduced to nearest
neighbor search, the problem is still hard (Ω(N) for
a single query) without any assumption on the struc-
ture of the metric or the dataset Sr. Here we present
one notion of characterizing the hardness in terms of
the structure of the metric [31]:

Definition 1. Let BS(p,∆) be the set of points in S
within a ball of closed radius ∆ around some p ∈ S
with respect to a metric d:

BS(p,∆) = {r ∈ S : d(p, r) ≤ ∆}.

Then, the expansion constant of S with respect
to the metric d is the smallest c ≥ 2 such that

|BS(p, 2∆)| ≤ c|BS(p,∆)| ∀ p ∈ S, ∀ ∆ > 0.

The expansion constant effectively bounds the
number of points that could be sitting on the surface
of a hyper-sphere of any radius around any point. If
c is high, nearest neighbor search could be expen-
sive. A value of c ∼ Ω(N) implies that the search
cannot be better than linear scan asymptotically. Un-
der the assumption of a bounded expansion constant,
though, nearest-neighbor search methods with sub-
linear or logarithmic theoretical runtime guarantees
have been presented [31, 8, 57].

Now, we extend the concept of the expansion con-
cept in order to characterize the difficulty of max-
kernel search.

For a given query pq and Mercer kernel K(·, ·), the
kernel values are proportional to the length of the
projections in the direction of ϕ(pq) in H. While the
hardness of nearest-neighbor search depends on how
concentrated the surface of spheres are (as charac-
terized by the expansion constant), the hardness of
max-kernel search should depend on the distribution
of the projections in the direction of the query. This
distribution can be characterized using the distribu-
tion of points in terms of distances:

If two points are close in distance, then
their projections in any direction are close
as well. However, if two points have close
projections in a direction, it is not necessary
that the points themselves are close to each
other.

It is to characterize this reverse relationship be-
tween points (closeness in projections to closeness in
distances) that we present a new notion of concentra-
tion in any direction:

Definition 2. Let K(x, y) = 〈ϕ(x), ϕ(y)〉H be a Mer-
cer kernel, dK(x, y) be the induced metric from K
(Equation 3), and let BS(p,∆) denote the closed ball
of radius ∆ around a point p in H. Also, let

IS(v, [a, b]) = {r ∈ S : 〈v, ϕ(r)〉H ∈ [a, b]} (6)

be the set of objects in S projected onto a direction
v in H lying in the interval [a, b] along v. Then,
the directional concentration constant of S with
respect to the Mercer kernel K(·, ·) is defined as the
smallest γ ≥ 1 such that ∀u ∈ H such that ‖u‖H = 1,
∀p ∈ S and ∀∆ > 0, the set

IS(u, [〈u, ϕ(p)〉H −∆, 〈u, ϕ(p)〉H + ∆])

can be covered by at most γ balls of radius ∆.

5

The directional concentration constant is not a
measure of the number of points projected into a
small interval, but rather a measure of the number of
“patches” of the data in a particular direction. For a
set of points to be close in projections, there are at
most γ subsets of points that are close in distances
as well. Consider the set of points B = IS(q, [a, b])
projected onto an interval in some direction (Figure
3(a)). A high value of γ implies that the number of
points in B is high but the points are spread out and
the number of balls (with diameter |b − a|) required
to cover all these points is high as well—with each
point possibly requiring an individual ball. Figure
3(c) provides one such example. A low value of γ im-
plies that either B has a small size or the size of B
is high and B can be covered with a small number of
balls (of diameter |b− a|). Figure 3(b) is an example
of a set with low γ. The directional concentration
constant bounds the number of balls of a particular
radius required to index points that project onto an
interval of size twice the radius.

4 Indexing points in H
Earlier, we discussed the use of space trees for
max-kernel search. The first problem, which is the
lack of distance metric, is addressed by the induced
metric dK(·, ·) in the space H. However, we now
have another problem. The standard procedure for
constructing kd-trees depends on axis-aligned splits
along the mean (or median) of a subset of the data in
a particular dimension. InH this does not make sense
because we do not have access to the mapping ϕ(·).
Thus, kd-trees—and any tree that requires knowledge
of ϕ(·)—cannot be used to index points in H. This
includes random projection trees [19] and principal-
axis trees [47]4.

Metric trees [54] are a type of space tree that does
not require axis-aligned splits. Instead, during con-
struction, metric trees calculate a mean µ for each
node [49]. In general, µ is not a point in the dataset
the tree is built on. In our situation, we cannot cal-
culate µ because it lies in H and we do not have
access to ϕ(·). However, we can use the kernel trick
to avoid calculating µ and evaluate kernels involving
µ (assume µ is the mean of node N , and Dp(N)
refers to the set of descendant points of N):

K(q, µ) =

∑
r∈Dp(N)K(q, r)

|Dp(N)|
. (7)

4The explicit embedding techniques mentioned earlier [55,
30] could be used to approximate the mapping ϕ(·) and allow
kd-trees (and other types of trees) to be used. However, we do
not consider that approach in this work.

This type of trick can also be applied to ball trees
and some other similar tree structures. However, it is
clear that a single kernel evaluation against the mean
is now numerous kernel evaluations, making the use
of metric or ball trees computationally prohibitive in
our setting, for both tree construction in H and max-
kernel search.

Therefore, we consider the cover tree [8], a recently
formulated tree that bears some similarity to the ball
tree. The tree itself will not be detailed here due
to its complexity; consult [8] and [9] for details. In
addition, the mlpack machine learning library [16]
presents a documented reference implementation of
cover trees.

The cover tree has the interesting property that ex-
plicit object representations are unnecessary for tree
construction: the tree can be built entirely with only
knowledge of the metric function dK(·, ·) evaluated on
points in the dataset. Each node Ni in the cover tree
represents a ball in H with a known radius λi and
its center µi is a point in the dataset. Thus, we can
evaluate the minimum distance between two nodes
Nq and Nr quickly:

dmin(Nq,Nr) = dK(µq, µr)− λq − λr. (8)

Our knowledge of K(·, ·) and its induced metric
dK(·, ·) in H, then, is entirely sufficient to construct
a cover tree with no computational penalty. In ad-
dition to this clear advantage, the time complexities
of building and querying a cover tree have been an-
alyzed extensively [8, 57], whereas kd-trees, metric
trees, and other similar structures have been analyzed
only under very limited settings [22].

Although we have presented the cover tree as the
best tree option, it is not the only option for a
choice of tree. What we require of a tree structure is
that it can be built only with kernel evaluations be-
tween points in the dataset (or distance evaluations)5.
Therefore, we introduce some definitions and nota-
tion from [17] in order to present our algorithm in
a tree-independent manner. The following notation
will be used throughout the paper, and a reference
table is given in Table 1.

• A node in a tree is denoted with the letter N .

• The set of child nodes of a node Ni is denoted
C (Ni) or Ci.

5Earlier, we mentioned kernels that work between abstract
objects. For our purposes, it does not make a difference if the
kernel works on abstract objects or points, so for simplicity we
use the term ‘points’ instead of ‘objects’ although the two are
essentially interchangeable.

6

• The set of points held in a node Ni is denoted
P(Ni) or Pi. Each cover tree node only holds
one point.

• The set of descendant nodes of a node Ni, de-
noted Dn(Ni) or Dn

i , is the set of nodes C (Ni)∪
C (C (Ni)) ∪ . . .6.

• The set of descendant points of a node Ni, de-
noted Dp(Ni) or Dp

i , is the set of points {p : p ∈
P(Dn(Ni)) ∪P(Ni)

7.

• The center of a node Ni is denoted µi. For cover
trees, µi is the single point that Ni holds in H.
Therefore we also denote pi as the point such
that ϕ(pi) = µi.

• The furthest descendant distance for a node Ni

and a metric d(·, ·) is defined as

λ(Ni) = max
p∈Dp(Ni)

dK(pi, p). (9)

For cover trees, λ(Ni) (or λi) is computed at tree
construction time and cached.

Symbol Description

N A tree node

Ci Set of child nodes of Ni

Pi Set of points held in Ni

Dn
i Set of descendant nodes of Ni

Dp
i Set of points contained in Ni and Dn

i

µi Center of Ni (for cover trees, µi = pi)

λi Furthest descendant distance

Table 1: Notation for trees. See text for details.

5 Bounding the kernel value

To construct a tree-based algorithm that prunes cer-
tain subtrees, we must be able to determine the max-
imum kernel value possible between a point and any
descendant point of a node.

Theorem 1. Given a space tree node Ni with center
ϕ(pi) = µi and furthest descendant distance λi, the
maximum kernel function value between some point
pq and any point in Dp

i is bounded by the function

Kmax(pq,Ni) = K(pq, pi) + λi

√
K(pq, pq). (10)

6By C (C (Ni)), we mean all the children of the children of
node Ni: {C (Nc) : Nc ∈ C (Ni)}.

7The meaning of P(Dn(Ni)) is similar to C (C (Ni)).

Figure 4: Point-to-node max-kernel upper bound.

Proof. Suppose that p∗ is the best possible match in
Dp
i for pq, and let ~u be a unit vector in the direction

of the line joining ϕ(pi) to ϕ(p∗) in H. Then,

ϕ(p∗) = ϕ(pi) + ∆~u (11)

where ∆ = dK(µi, p
∗) is the distance between ϕ(pi)

and the best possible match ϕ(p∗) (see Figure 4).
Then, we have the following:

K(pq, p
∗) = 〈ϕ(pq), ϕ(p∗)〉H

= 〈ϕ(pq), ϕ(pi) + ∆~u〉H
= 〈ϕ(pq), ϕ(pi)〉H + 〈ϕ(pq),∆~u〉H
≤ 〈ϕ(pq), ϕ(pi)〉H + ∆ ‖ϕ(pq)‖H ,(12)

where the inequality step follows from the Cauchy-
Schwartz inequality (〈x, y〉 ≤ ‖x‖ · ‖y‖) and the fact
that ‖~u‖H = 1. From the definition of the kernel
function, Equation 12 gives

K(pq, p
∗) ≤ K(pq, pi) + ∆

√
K(pq, pq). (13)

We can bound ∆ by noting that the distance
dK(·, ·) between the center of Ni and any point in
Dp
i is less than or equal to λi. We call our bound
Kmax(pq,Ni), and the statement of the theorem fol-
lows.

In addition, to construct a dual-tree algorithm, it
is useful to extend the maximum point-to-node kernel
value of Theorem 1 to the node-to-node setting.

Theorem 2. Given two space tree nodes Nq and Nr

with centers µq = ϕ(pq) and µr = ϕ(pr), respectively,
the maximum kernel function value between any point
in Dp

q and Dp
r is bounded by the function

Kmax(Nq,Nr) = K(pq, pr) + λq

√
K(pr, pr)

+ λr

√
K(pq, pq) + λqλr. (14)

7

Proof. Suppose that p∗q ∈ Dp
q and p∗r ∈ Dp

r are the
best possible matches between Nq and Nr; that is,

K(p∗q , p
∗
r) = max

pq∈Dp
q ,pr∈Dp

r

K(pq, pr). (15)

Now, let ~uq be a vector in the direction of the line
joining ϕ(pq) to ϕ(p∗q) in H, and let ~ur be a vector in
the direction of the line joining ϕ(pr) to ϕ(p∗r) in H.
Then let ∆q = dK(pq, p

∗
q) and ∆r = dK(pr, p

∗
r). We

can use similar reasoning as in the proof for Theorem
1 to show the following:

K(p∗q , p
∗
r) = 〈ϕ(p∗q), ϕ(p∗r)〉H

= 〈ϕ(pq) + ∆q ~uq, ϕ(pr) + ∆r ~ur〉H
= 〈ϕ(pq) + ∆q ~uq, ϕ(pr)〉H

+ 〈ϕ(pq) + ∆q ~uq,∆r ~ur〉H
= 〈ϕ(pq), ϕ(pr)〉H + 〈∆q ~uq, ϕ(pr)〉H

+ 〈ϕ(pq),∆r ~ur〉H + 〈∆q ~uq,∆r ~ur〉H
≤ 〈ϕ(pq), ϕ(pr)〉H + ∆q ‖ϕ(pr)‖H

+ ∆r ‖ϕ(pq)‖H + ∆q∆r, (16)

where again the inequality steps follow from the
Cauchy-Schwarz inequality. We can then substitute
in the kernel functions to obtain

K(p∗q , p
∗
r) ≤ K(pq, pr) + ∆q

√
K(pr, pr)

+ ∆r

√
K(pq, pq) + ∆q∆r. (17)

Then, as with the point-to-node case, we can bound
∆q by λq and ∆r can be bounded by λr. Call the
bound Kmax(Nq,Nr), and the statement of the the-
orem follows.

For normalized kernels (K(x, x) = 1 ∀x)8, all the
points are on the surface of a hypersphere in H. In
this case, the above bounds in Theorems 1 and 2 are
both correct but possibly loose. Therefore, we can
present tighter bounds specifically for this condition.

Theorem 3. Consider a kernel K such that
K(x, x) = 1 ∀ x, and space tree node Ni with cen-
ter µi = ϕ(pi) and furthest descendant distance λi.
Define the following quantities:

αi =

(
1− 1

2
λ2i

)
, (18)

βi = λi

√
1− 1

4
λ2i . (19)

8Earlier we defined normalized kernels as K(x, x) = c for
some constant c, but here for simplicity we consider only c = 1.
Adapting the proof and bounds for c 6= 1 is straightforward.

Then, the maximum kernel function value between
some point pq and any point in Dp

i is bounded from
above by the function

Knmax(pq,Ni) =


K(pq, pi)αi + βi

√
(1−K(pq, pi)2)

if K(pq, pi) ≤ αi
1 otherwise

(20)

Proof. Since all the points pq and Dp
i are sitting on

the surface of a hypersphere in H, K(pq, p) denotes
the cosine of the angle made by ϕ(pq) and ϕ(p) at
the origin. If we first consider the case where pq lies
within the ball bounding space tree node Ni (that
is, if dK(pq, pi) < λi), it is clear that the maximum
possible kernel evaluation should be 1, because there
could exist a point in Dp

i whose angle to pq is 0. We
can restate our condition as a condition on K(pq, pi)
instead of dK(pq, pi):

dK(pq, pi) < λi,√
K(pq, pq) +K(pi, pi)− 2K(pq, pi) < λi,

K(pq, pi) > 1− 1

2
λ2i ,

K(pq, pi) > αi.

Now, for the other case, let cos θpqpi = K(pq, pi)
and p∗ = arg maxp∈Dp

i
K(pq, p). Let θpip∗ be the an-

gle between ϕ(pi) and ϕ(p∗) at the origin, let θpqp∗

be the angle between ϕ(pq) and ϕ(p∗) at the origin,
and let θpqpi be the angle between ϕ(pq) and ϕ(pi) at
the origin. Then,

K(pq, p
∗) = cos θpqp∗

≤ cos({θpqpi − θpip∗}+).

We know that dK(pi, p
∗) ≤ λi, and also that

dK(pi, p
∗) =

√
2− 2 cos θpip∗ . Therefore, cos θpip∗ ≥

1− 1
2λ

2
i . This means

θpip∗ ≤ | cos−1(1− 1

2
λ2i)|. (21)

Combining this with Equation 21, we get:

K(pq, p
∗) ≤ cos

(
[θpqpi − θpip∗]+

)
(22)

Now, if we substitute | cos−1(1− 1
2λ

2
i)|, the largest

possible value for θpip∗ , we obtain the following:

Kmax(pq,Ni) ≤ cos

([
θqpi −

∣∣∣∣cos−1(1− 1

2
λ2i)

∣∣∣∣]
+

)

8

which can be reduced to the statement of the theorem
by the use of trigonometric identities. Combine with
the case where K(pq, pi) > αi, and call that bound
Knmax(pq,Ni). Then, the theorem holds.

We can show a similar tighter bound for the dual-
tree case.

Theorem 4. Consider a kernel K such that
K(x, x) = 1 ∀ x, and two space tree nodes Nq and
Nr with centers ϕ(pq) = µq and ϕ(pr) = µr, respec-
tively, and furthest descendant distances λq and λr,
respectively. Define the following four quantities:

αq =

(
1− 1

2
λ2q

)
,

αr =

(
1− 1

2
λ2r

)
,

βq = λq

√
1− 1

4
λ2q,

βr = λr

√
1− 1

4
λ2r.

Then, the maximum kernel function value between
any point in Dp

q and Dp
r is bounded from above by the

function

Knmax(Nq,Nr) =
K(pq, pr)(αqαr − βqβr)

+
(√

1−K(pq, pr)2
)

(γqδr + δrγq)

if K(pq, pr) ≤ 1− 1
2 (λq + λr)

2

1 otherwise.

(23)

Proof. All of the points in Dp
q and Dp

r are sitting on
the surface of a hypersphere in H. This means that
K(pq, pr) denotes the cosine of the angle made by
ϕ(pq) and ϕ(pr) at the origin. Similar to the previous
proof, we first consider the case where the balls in H
centered at ϕ(pq) and ϕ(pr) with radii λq and λr,
respectively, overlap. This situation happens when
dK(pq, pr) < λq + λr. In this case, it is clear that
the maximum possible kernel evaluation should be 1,
because there could exist a point in Dp

q whose angle
to a point in Dp

r is 0. We can restate the condition
as a condition on K(pq, pr):

K(pq, pr) > 1− 1

2
(λq + λr)

2
. (24)

Now, for the other case, assume that p∗q and p∗r
are the best matches between points in Dp

q and Dp
r .

Let cos θpqpr = K(pq, pr); let θpqp∗q be the angle be-
tween ϕ(pq) and ϕ(p∗q) at the origin; similarly, let
θprp∗r be the angle between ϕ(pr) and ϕ(p∗r) at the
origin. Lastly, let θp∗qp∗r be the angle between ϕ(p∗q)
and ϕ(p∗r) at the origin. Then,

K(p∗q , p
∗
r) = cos θp∗qp∗r

≤ cos

([
θpqpr − θpqp∗q − θprp∗r

]
+

)
.(25)

Using reasoning similar to the last proof, we obtain
the following bounds:

θpqp∗q ≤
∣∣∣∣cos−1

(
1− 1

2
λ2q

)∣∣∣∣ (26)

θprp∗r ≤
∣∣∣∣cos−1

(
1− 1

2
λ2r

)∣∣∣∣ . (27)

We can substitute these two values into Equation
25 to obtain

K(p∗q , p
∗
r) ≤ cos

([
θpqpr −

∣∣∣∣cos−1
(

1− 1

2
λ2q

)∣∣∣∣
−
∣∣∣∣cos−1

(
1− 1

2
λ2r

)∣∣∣∣]
+

)
. (28)

This can be reduced to the statement of the the-
orem by the use of trigonometric identities. Com-
bine with the conditional from earlier and call the
combined bound Knmax(Nq,Nr). Then, the theorem
holds.

In the upcoming algorithms, we will not use the
tighter bounds for normalized kernels given in Theo-
rems 3 and 4; however, it is easy to re-derive the algo-
rithm with the tighter bounds, if a normalized kernel
is being used. Simply replace instances of Kmax(·, ·)
with Knmax(·, ·).

6 Single-tree algorithm

First, we will present a single-tree algorithm called
single-tree FastMKS that works on a single
query pq and a reference set Sr. Following the
tree-independent algorithmic framework of [17], we
will present our algorithm as two functions: a
BaseCase(pq, pr) function that runs on two points,
and a Score(pq, Nr) function that runs on the
query point pq and a node Nr.

9

9In the original version of this paper, the algorithm was
presented specifically for cover trees. This formulation is much
more general and intuitive, and reduces exactly to the cover
tree formulation given in the original paper [18].

9

Algorithm 1 BaseCase(pq, pr) for FastMKS.

1: Input: query point pq, reference point pr
2: Output: none

3: if K(pq, pr) > k∗ then
4: k∗ ← K(pq, pr)
5: p∗ ← pr
6: end if

Algorithm 2 Score(pq, Nr) for FastMKS.

1: Input: query point pq, reference space tree node
Nr, max-kernel candidate p∗ for pq and corre-
sponding max-kernel value k∗

2: Output: a score for the node, or ∞ if the node
can be pruned

3: if Kmax(pq,Nr) < k∗ then
4: return ∞
5: else
6: return Kmax(pq,Nr)
7: end if

Given those two functions, a single-tree algorithm
can be assembled using any space tree (with addi-
tional constraints as given in Section 4) and any valid
pruning single-tree traversal [17]. In short, a prun-
ing single-tree traversal visits nodes in the tree, and
calls the Score() function to determine if the given
node Nr can be pruned. If the node can be pruned,
Score() will return ∞, and no descendants of Nr

will be visited. Otherwise, BaseCase() will be called
with query point pq and each point pr ∈Pr.

In our problem setting, we can prune a node Nr if
no points in Dp

r can possibly contain a better max-
kernel candidate than what has already been found
as a max-kernel candidate for pq. Thus, any descen-
dants of Nr do not need to be visited, as they cannot
improve the solution.

The BaseCase() function can be seen in Algorithm
1. It assumes p∗ is a global variable representing the
current max-kernel candidate and k∗ is a global vari-
able representing the current best max-kernel value.
The method itself is very simple: calculate K(pq, pr),
and if that kernel evaluation is larger than the cur-
rent best max-kernel value candidate k∗, then store
that kernel and pr as the new best max-kernel candi-
date and K(pq, pr) as the new best max-kernel value
candidate.

The Score() function for single-tree FastMKS is
given in Algorithm 2. The intuition is clear: if the
maximum possible kernel value between pq and any
point in Dp

i is less than the current max-kernel can-
didate value, then Ni cannot possibly hold a better

candidate and it can be pruned (return ∞). Other-
wise, the kernel value itself is returned. This return
value is chosen because pruning single-tree traversals
may use the value returned by Score() to determine
the order in which to visit subsequent nodes [17].

The actual single-tree FastMKS algorithm is con-
structed by selecting a type of space tree and selecting
a pruning single-tree traversal with the BaseCase()

function as in Algorithm 1 and the Score() function
as in Algorithm 2. The algorithm is run by building
a space tree Tr on the set of reference points Sr, then
using the pruning single-tree traversal with point pq
and tree Tq. At the beginning of the traversal, p∗ is
initialized to an invalid value and k∗ is initialized to
−∞.

Proving the correctness of the single-tree FastMKS
algorithm is trivial, but first, we will explicitly define
a pruning single-tree traversal as in [17].

Definition 3. A pruning single-tree traversal is
a process that, given a space tree, will visit nodes in
the tree and perform a computation to assign a score
to that node. If the score is above some bound (or∞),
the node is “pruned” and none of its descendants will
be visited; otherwise, a computation is performed on
any points contained within that node. If no nodes
are pruned, then the traversal will visit each node in
the tree once.

Theorem 5. At the termination of the single-tree
FastMKS algorithm for a given space tree and prun-
ing single-tree traversal,

p∗ = arg max
pr∈Sr

K(pq, pr). (29)

Proof. First, assume that Score() does not prune
any nodes during the traversal of the tree Tr. Then,
by the definition of pruning single-tree traversal,
BaseCase() is called with pq and every pr ∈ Sr. This
is equivalent to linear scan and will give the correct
result.

Then, by Theorem 1 (or Theorem 3 if K(·, ·) is
normalized and Knmax(·, ·) is being used), a node is
only pruned if it does not contain a point pr where
K(pq, pr) > k∗. Thus, BaseCase() is only not called
in situations where p∗ and k∗ would not be modified.
This, combined with the previous observation, means
that p∗ and k∗ are equivalent to the linear scan results
at the end of the traversal—and we know the linear
scan results are correct. Thus, the theorem holds.

7 Single-tree runtime analysis

For the runtime analysis of single-tree FastMKS, we
will restrict the type of space tree to the cover tree,

10

Algorithm 3 The standard pruning single-tree
traversal for cover trees.

1: Input: query point pq, reference cover tree Tr

2: Output: none

3: R← { root(Tr) }
4: s←∞
5: if Score(pq, root(Tr)) =∞ then
6: return
7: end if

8: do
9: s← largest scale of all non-visited nodes in R

10: for each Ni ∈ R where si = s do
11: BaseCase(pq, pi)
12: for each Nc ∈ C (Ni) do
13: if Score(pq, Nc) 6=∞ then
14: add Nc to R
15: end if
16: end for
17: end for
18: while s 6= −∞

due to the desirable theoretical properties of the cover
tree. First, we will detail the cover tree datastructure
more comprehensively. For readers familiar with the
cover tree as described in [8], we are focusing only on
the explicit representation.

We already know that the cover tree is a space tree;
it is also a leveled tree: each node Ni holds one point
pi and has a scale si that represents its level in the
tree. A large si represents a node closer to the root
of the tree; the root has the largest scale of all nodes
in the tree. Each child (if any) of Ni has scale less
than si. If Ni has no children, then its scale is −∞.
In addition, for a node Ni, λi ≤ 2si+1. Therefore, we
can bound the furthest descendant distance at scale
si from above with 2si+1.

The last important property of cover trees is the
separation invariant, which is integral to our proofs.
There cannot exist two nodes Ni and Nj at scale si
such that d(pi, pj) ≤ 2si . Alternately stated, for any
Ni and Nj both at scale si, d(pi, pj) > 2si .

Algorithm 3 describes the standard pruning single-
tree traversal used for cover trees, adapted to a tree-
independent form from the original formulation in [8].
Note that this traversal will not work on arbitrary
types of space trees because it depends on the scale,
which is specific to the cover tree. The traversal it-
self is breadth-first; it maintains a set R of nodes
that have not been pruned, and iteratively reduces
the maximum scale present in R to −∞.

Now, we introduce a few useful results from [8].
Proofs of each lemma can be found in that paper.

Lemma 1. The number of children of any cover tree
node Ni is bounded by c4, where c is the expansion
constant of the dataset the cover tree is built on, as
defined in Definition 1.

Lemma 2. The maximum depth of any point pr in a
cover tree Tr is O(c2 logN), where N is the number
of points in the dataset that Tr is built on.

The main result of this section is the search time
complexity of single-tree FastMKS in terms of the
number of points in the reference set Sr and the prop-
erties of the kernel.

Theorem 6. Given a Mercer kernel K(·, ·), a query
point pq, and a dataset Sr of size N with expan-
sion constant c (Definition 1) with respect to the in-
duced metric dK (Equation 3) and directional con-
centration constant γ (Definition 2), the single-tree
FastMKS algorithm using cover trees and the stan-
dard single-tree cover tree traversal on pq and Sr re-
quires O(c12γ2 logN) time.

Proof. The first part of the proof is similar to the run-
time analysis of nearest-neighbor search with cover
trees [8]. Call Ri the set of nodes in R with scale si.
Now, let s∗ be the scale that has the greatest number
of elements in R:

s∗ = arg max
s∈[−∞,∞)

|{Ni ∈ R : si = s}| . (30)

Define the set R∗ as the set of nodes in R with
scale s∗.

By Lemma 2, the depth of any node in the tree is
at most k = O(c2 logN). Because |R−∞| ≤ |R∗|, we
can conclude that the maximum number of outer iter-
ations on s required (lines 8—18) is O(k|R∗|). Each
inner iteration (lines 10—17) considers a maximum
of |R∗| points, and the innermost loop that considers
the children of each element in Ni (lines 12—16) con-
siders a maximum of c4 points for each Ni (because of
Lemma 1). Combining all of these things, we obtain
a runtime bound of O(kc4|R∗|2) = O(c6|R∗|2 logN).
Thus, the theorem will hold if we can show that
|R∗| ≤ c3γ.

To bound |R∗|, let u = ϕ(pq)/‖ϕ(pq)‖H. Then,

ISr
(ϕ(pq), [a, b]) = ISr

(
u,

[
a

‖ϕ(pq)‖H
,

b

‖ϕ(pq)‖H

])
.

For any scale si, let Ri be the set of all nodes in R
with scale si when s = si (that is, Ri is the set of all
nodes considered by line 10 when s = si):

Ri = {Ni : Ni ∈ R, si = s} .

11

But, for any node Ni to be in R, then we know
that Kmax(pq,Ni) ≥ k∗. Thus, we can express Ri
differently:

Ri = {Ni : Ni ∈ R, si = s}
⊆ {Ni : Ni ∈ Tr,Kmax(pq,Ni) ≥ k∗, si = s} .

Now, by Equation 6, any Ni in the set Ri satisfies

ϕ(pi) ∈ ISr

(
ϕ(pq),

[
k∗ − λi‖ϕ(pq)‖H, k̂

])
where k̂ is the true max-kernel value (that is, k̂ =
maxpr∈Sr K(pq, pr)). Because λi ≤ 2si+1,

ϕ(pi) ∈ ISr

(
ϕ(pq),

[
k∗ − 2si+1‖ϕ(pq)‖H, k̂

])
⊆ ISr

(
ϕ(pq),

[
k̂ − 2si+2‖ϕ(pq)‖H, k̂

])
because k̂ ≤ k∗ + 2si+1‖ϕ(pq)‖H. Further,

ϕ(pi) ∈ ISr

(
ϕ(pq),

[
K(pq, pi)− 2si+2‖ϕ(pq)‖H,
K(pq, pi) + 2si+2‖ϕ(pq)‖H

])
= ISr

(
u,
[
〈u, ϕ(pi)〉H − 2si+2,

〈u, ϕ(pi)〉H + 2si+2
])
.

Remember that this inclusion applies for all pi of
nodes in Ri. By the definition of directional concen-
tration constant (Definition 2), there exist γ points
pj ∈ Sr such that

ISr

(
u,
[
〈u, ϕ(pr)〉H − 2si+2, 〈u, ϕ(pr)〉H + 2si+2

])
⊆

γ⋃
j=1

BSr (pj , 2
si+2).

Due to the separation invariant, Ri only has points
pi that are separated by at least 2si . Thus, |Ri| is less
than or equal to the number of balls of radius 2si−1

that can be packed into the set

γ⋃
j=1

BSr
(pj , 2

si+2).

Consider each BSr
(pj , 2

si+2) individually. Using
the definition of expansion constant (Definition 1),
we have

|BSr (pj , 2
si+2)| ≤ c3|BSr (pj , 2

si−1)|
and |BSr

(pj , 2
si−1)| can only contain one point at

scale si. Hence, for all si, |Ri| ≤ γc3, and thus |R∗| ≤
γc3, giving the statement of the theorem.

Comparing to the query time O(c12 log n) for
single-tree cover tree nearest neighbor search [8], it
is clear that FastMKS has similar O(log n) scaling,
but also has an extra price of γ2 to solve the more
general problem of max-kernel search.

It is also worth noting that the tighter bound given
in Theorem 3 for normalized kernels could be used to
produce a tighter runtime bound.

8 Dual-tree algorithm

Now, we present a dual-tree algorithm for max-kernel
search, called dual-tree FastMKS. This algorithm,
as with the single-tree algorithm in Section 6, is pre-
sented in the tree-independent framework of [17].
The BaseCase(pq, pr) function is the same as the
single-tree function (Algorithm 1), and we present a
dual-tree pruning rule with a Score(Nq, Nr) func-
tion that runs on a query node Nq and a reference
node Nr.

Because the dual-tree algorithm solves max-kernel
search for an entire set of query points Sq, we must
store a kernel candidate p∗ and value k∗ for each
query point pq; call these p∗(pq) and k∗(pq), re-
spectively. At the initialization of the algorithm
k∗(pq) = ∞ for each pq ∈ Sq and p∗(pq) is set to
some invalid point.

The pruning rule is slightly more complex. In the
dual-tree setting, we can only prune a node combi-
nation (Nq,Nr) if and only if Dp

r contains no points
that can improve p∗(pq) and k∗(pq) for any pq ∈ Dp

q .
There are multiple ways to express this concept, and
we will use two of them to construct a bound func-
tion to determine when we can prune. This section
is heavily based on the reasoning used to derive the
nearest-neighbor search bound in [17].

First, consider the smallest max-kernel value
k∗(pq) for all points pq ∈ Dp

q ; call this B1(Nq):

B1(Nq) = min
pq∈Dp

q

k∗(pq)

= min

{
min
pq∈Pq

k∗(pq), min
Nc∈Cq

B1(Nq)

}
where the simplification is a result of expressing
B1(Nq) recursively. Now, note also that for any point
pq ∈ Dp

q with max-kernel candidate value k∗(pq), we
can place a lower bound on the true max-kernel value
k̂(p′q) for any p′q ∈ Dp

r by bounding K(p′q, p
∗(pq)).

This gives

k̂(p′q) ≥ k∗(pq)− (ρq + λq)
√
K (p∗(pq), p∗(pq))

12

Algorithm 4 Score(Nq, Nr) for FastMKS.

1: Input: query node Nq, reference node Nr

2: Output: a score for the node combination
(Nq,Nr) or ∞ if the combination can be pruned

3: if Kmax(Nq,Nr) < B(Nq) then
4: return ∞
5: else
6: return Kmax(Nq,Nr)
7: end if

where ρq is the maximum distance from any p ∈Pq

to the centroid of Nq (for cover trees, this value is
always 0). This inequality follows using similar rea-
soning as Theorem 1, except for that we are finding
a lower bound instead of an upper bound.

Considering all the points pq ∈ Dp
q , we find that

the minimum possible max-kernel value for any point
pq can be expressed as

max
pq∈Dp

q

k∗(pq)− (ρq + λq)
√
K (p∗(pq), p∗(pq)).

However, this is difficult to calculate in practice;
thus, we introduce a second bounding function that
can be quickly calculated by only considering points
in Pq and not Dp

q :

B2(Nq) = max
pq∈Pq

k∗(pq)−(ρq+λq)
√
K (p∗(pq), p∗(pq)).

Now, we can take the better of B1(Nq) and B2(Nq)
as our pruning bound:

B(Nq) = max {B1(Nq), B2(Nq)} . (31)

This means that we can prune a node combination
(Nq,Nr) if

Kmax(Nq,Nr) < B(Nq),

and therefore we introduce a Score() function in Al-
gorithm 4 that uses B(Nq) to determine if a node
combination should be pruned.

As with the single-tree algorithm, we will explicitly
define a pruning dual-tree traversal as in [17] before
proving correctness.

Definition 4. A pruning dual-tree traversal is a
process that, given two space trees Tq (query tree) and
Tr (reference tree), will visit combinations of nodes
(Nq,Nr) such that Nq ∈ Tq and Nr ∈ Tr no more
than once, and perform an computation to assign a
score to that combination. If the score is above some

bound (or∞), the combination is pruned and no com-
binations (Nqc,Nrc) such that Nqc ∈ Dn

q ∪Nq and
Nrc ∈ Dn

r ∪Nr will be visited; otherwise, a computa-
tion is performed between each point in Nq and each
point in Nr. If no nodes are pruned, a computation
is performed between each point in the query tree and
the reference tree.

Theorem 7. At the termination of the dual-tree
FastMKS algorithm for a given space tree and prun-
ing dual-tree traversal,

p∗(pq) = arg max
pr∈Sr

K(pq, pr) ∀ pq ∈ Sq. (32)

Proof. First, assume that Score() does not prune
any node combinations during the dual traversal of
the trees Tq and Tr. Then, by the definition of prun-
ing dual-tree traversal, BaseCase() will be called
with each pq ∈ Sq and each pr ∈ Sr; this is equivalent
to linear scan and will give the correct results.

We have already stated the validity of B(Nq)
(Equation 31). Because of that, and also by The-
orem 2 (or Theorem 4 if K(·, ·) is normalized and
Knmax(·, ·) is being used), a node combination is only
pruned is it does not contain a point pr that would
modify p∗(pq) or k∗(pq) for any pq ∈ Dp

q . This, com-
bined with the previous observation, means that p∗

and k∗ are equivalent to the linear scan results for
each pq ∈ Sr, and thus, the theorem holds.

9 Dual-tree runtime analysis

As in Section 7, we will restrict the type of space tree
to the cover tree for the runtime analysis of dual-tree
FastMKS. For this analysis, we must introduce a few
quantities and useful lemmas.

Lemma 3. Consider a set R of cover tree nodes
from the cover tree T . If each node Nr has a parent
par(Nr) with scale at least s∗, then for any two nodes
Nx ∈ R,Ny ∈ R with points px and py, respectively,

d(px, py) > 2(s
∗−1). (33)

Proof. For this proof we will use the implicit repre-
sentation of the cover tree T (see [8] for more details).
Any explicit cover tree node Nx will have an implicit
parent node (call this Ni) where si = sx + 1. Given
Ni, either pi = px or pi 6= px.

If pi 6= px, then Ni is also an explicit cover tree
node; that is, Ni = par(Nx), in which case we know
that the only possibility is that si = s∗ and therefore
Nx has scale s∗ − 1.

13

If pi = px, then Nx has a series of implicit parent
nodes which each have point px. The last implicit
node in this series will have implicit parent par(Nx),
which is also an explicit node with scale at least s∗.
Thus, an implicit node with point pi and scale s∗− 1
exists.

Consequently, for every node in R, there exists an
implicit node with the same point and scale s∗ − 1.
Because the separation invariant also applies to im-
plicit nodes, each pair of points is separated by
greater than 2s

∗−1, and the lemma holds.

Now, we define the maximum norms and minimum
norms of the query set Sq and reference set Sr:

ηq = max
pq∈Sq

‖ϕ(pq)‖H, (34)

ηr = max
pr∈Sr

‖ϕ(pr)‖H, (35)

τq = min
pq∈Sq

‖ϕ(pq)‖H, (36)

τr = min
pr∈Sr

‖ϕ(pr)‖H. (37)

Next, we use these quantities to place bounds on
the maximum distances dH(·, ·) between points in the
dataset, and place an upper bound on the maximum
scale of cover tree nodes.

Lemma 4. For the query set Sq, the maximum dis-
tance between any points in Sq,

dmax
H (Sq) ≤ 2ηq. (38)

Proof. We can alternately write dmax
H (Sq) as

dmax
H (Sq) = max

pi∈Sq,pj∈Sq

dH(pi, pj)

(dmax
H (Sq))

2 = max
pi∈Sq,pj∈Sq

‖ϕ(pi)‖2H + ‖ϕ(pj)‖2H

− 2〈ϕ(pi), ϕ(pj)〉H.

Note that 〈ϕ(pi), ϕ(pj)〉H is minimized when
ϕ(pi) and ϕ(pj) point opposite ways in H:
ϕ(pi)/‖ϕ(pi)‖H = −(ϕ(pj)/‖ϕ(pj)‖H). Thus,

(dmax
H (Sq))

2 ≤ max
pi∈Sq,pj∈Sq

‖ϕ(pi)‖2H + ‖ϕ(pj)‖2H

− 2 max{〈ϕ(pi),−ϕ(pi)〉H,
〈ϕ(pj),−ϕ(pj)〉H}

≤ max
pi∈Sq,pj∈Sq

‖ϕ(pi)‖2H + ‖ϕ(pj)‖2H

+ 2 max{‖ϕ(pi)‖2H, ‖ϕ(pj)‖2H}
≤ 4η2q .

This trivially reduces to the result.

Corollary 1. The maximum distance between any
points in Sr is

dmax
H (Sr) ≤ 2ηr. (39)

Lemma 5. The top scale sTr (maximum/largest
scale) in the cover tree Tr built on Sr is bounded as

sTr ≤ log2(ηr). (40)

Proof. The root of the tree Tr is the node with the
largest scale, and it is the only node of that scale
(call this scale sTr). The furthest descendant distance

of the root node is bounded by 2s
T
r +1; however, this is

not necessarily the distance between the two furthest
points in the dataset (consider a tree where the root
node is near the centroid of the data). This, with

Corollary 1, yields 2s
T
r +1 ≤ 2ηr which is trivially re-

duced to the result.

Algorithm 5 details the standard dual-tree traver-
sal for cover trees, adapted from [8]. The traversal
is begun on trees Tq and Tr by calling Algorithm 5
with root(Tq) and { root(Tr) }.

Algorithm 5 The standard pruning dual-tree traver-
sal for cover trees.

1: Input: query node Nq, set of reference nodes R
2: Output: none

3: smax
r ← maxNr∈R sr

4: if (sq < smax
r) or (smax

r = −∞) then
5: for each Nr ∈ R do
6: BaseCase(pq, pr)
7: end for
8: Rr ← {Nr ∈ R : sr = smax

r }
9: Rr−1 ← {C (Nr) : Nr ∈ Rr} ∪ (R \Rr)

10: R′r−1 ← {Nr ∈ Rr−1 : Score(Nq,Nr) 6=∞}
11: recurse with Nq and R′r−1
12: else
13: for each Nqc ∈ C (Nq) do
14: R′ ← {Nr ∈ R : Score(Nq,Nr) 6=∞}
15: recurse with Nqc and R′

16: end for
17: end if

Note that the traversal given in Algorithm 5 at-
tempts to descend the two trees in such a way that
the scales sq and smax

r remain close to equal. Thus,
the traversal’s running time will depend on the dif-
ferences in scales of each tree. To quantify this differ-
ence, we introduce a definition based on the degree
of bichromaticity defined in [57].

Definition 5. Let Tq and Tr be two cover trees built
on query set Sq and reference set Sr, respectively.

14

Now consider a pruning dual-tree traversal (such as
Algorithm 5 with the property that the scales of nodes
in Tq and Tr are kept as close as possible—that is,
the tree with the larger scale is always descended.
Then, the inverse degree of bichromaticity ν of
the tree pair (Tq,Tr) is the maximum number of re-
cursions in Tr following a recursion in Tq before an-
other recursion in Tq or the termination of the algo-
rithm (whichever happens first).

This quantity is related to the degree of bichro-
maticity [57], which is the maximum number of re-
cursions in Tq between any two recursions in Tr.

Using these definitions and lemmas, we can show
the main result of this section.

Theorem 8. Given a Mercer kernel K(·, ·), a refer-
ence set Sr of size N with expansion constant cr and
directional concentration constant γr, a query set Sq
of size O(N), and with α defined as

α = 1 +
2ηr
τq
, (41)

the dual-tree FastMKS algorithm using cover trees
and the standard dual-tree cover tree traversal on Tq

(a cover tree built on Sq) and Tr (a cover tree built
on Sr) with inverse degree of bichromaticity ν requires

O(γrc
(7 log2 α)
r νN) time.

Proof. Consider a reference recursion (lines 4—11).
The work done in the base case loop from lines 5–7 is
O(|R|). This is bounded as |R| ≤ |R∗|, where |R∗| is
the largest set |R| for any scale smax

r and any query
node Nq during the course of the dual-tree recursion.

Then, lines 9 and 10 take O(c4r|Rr|) ≤ O(c4r|R∗|)
time; this is due to the width bound (Lemma 1). So,
one full reference recursion takes O(c4r|R∗|) time.

Now, note that there are O(N) nodes in Tq. Thus,
line 15 is visited O(N) times (remember, query nodes
cannot be pruned, so every one is visited). Each of
these O(N) visits to line 15 implies a recursion, in
which the reference set is descended up to ν times
4—11) before the query node is descended or the al-
gorithm terminates. In addition, each O(N) recur-
sion implies an O(|R|) ≤ O(|R∗|) operation for the
calculation of R′ (line 14. Thus, the full runtime of
the algorithm is bounded as O(c4r|R∗|νN + |R∗|N) =
O(c4r|R∗|νN).

The next step is to produce a bound on |R∗|. Con-
sider some reference set R encountered with maxi-
mum reference scale smax

r and query node Nq. Every
node Nr ∈ R satisfies the property enforced in line
10 that

Kmax(Nq,Nr) ≥ B(Nq). (42)

Remembering that
√
K(p, p) = ‖ϕ(p)‖H, we can

relax B(Nq) (Equation 31) for the cover tree (where
ρi = 0 for all Ni) to show

B(Nq) ≥ max
p∈Pq

(k∗(p) + λq ‖ϕ(p∗(p))‖H)

= k∗(pq)− λq ‖ϕ(p∗(pq))‖H (43)

which we can combine with Equation 42 to obtain

Kmax(Nq,Nr) ≥ k∗(pq) + λq‖ϕ(pq)‖H
K(pq, pr) ≥ k∗(pq)− λq

(
‖ϕ(pr)‖H +

‖ϕ(p∗(pq))‖H
)
− λr‖ϕ(pq)‖H − λqλr (44)

and, remembering that the scale of Nq is sq and the
scale of Nr is bounded above by smax

r , we simplify
further to

K(pq, pr) ≥ k∗(pq)−2sq+1
(
‖ϕ(pr)‖H+‖ϕ(p∗(pq))‖H

)
− 2s

max
r +1‖ϕ(pq)‖H − 2sq+s

max
r +2. (45)

We can express this conditional as membership in
a set ISr by first defining the true maximum kernel
value for pq as

k̂(pq) = max
pr∈Sr

K(pq, pr). (46)

The condition (Equation 45) can be stated as mem-
bership in a set:

ϕ(pr) ∈ ISr

(
ϕ(pq),

[
bl, k̂(pq)

])
(47)

where

bl = k∗(pq)− 2sq+1
(
‖ϕ(pr)‖H + ‖ϕ(p∗(pq))‖H

)
− 2s

max
r +1‖ϕ(pq)‖H − 2sq+s

max
r +2. (48)

Now, we produce a lower bound for bl. Note that
k̂(pq) ≤ k∗(pq) + 2s

max
r +1‖ϕ(pq)‖H, and see

bl ≥ k̂(pq)− 2sq+1
(
‖ϕ(pr)‖H + ‖ϕ(p∗(pq))‖H

)
−2s

max
r +2‖ϕ(pq)‖H − 2sq+s

max
r +2

≥ k̂(pq)− 2s
max
r +1

(
‖ϕ(pr)‖H + ‖ϕ(p∗(pq))‖H

)
−2s

max
r +2‖ϕ(pq)‖H − 22s

max
r +2 (49)

which follows because sq < smax
r during a reference

recursion (see line 4). Using the maximum and mini-
mum norms defined earlier, we can bound bl further:

15

bl ≥ k̂(pq)− 2s
max
r +1(ηr + ηr)− 2s

max
r +2‖ϕ(pq)‖H

− 22s
max
r +2

= k̂(pq)− 2s
max
r +2

(
‖ϕ(pq)‖H + ηr + 2s

max
r
)

≥ K(pq, pr)− 2s
max
r +2

(
‖ϕ(pq)‖H + ηr + 2s

max
r
)

≥ K(pq, pr)− 2s
max
r +2

(
‖ϕ(pq)‖H + ηr + 2s

T
r
)

≥ K(pq, pr)− 2s
max
r +2

(
‖ϕ(pq)‖H + 2ηr

)
where the last two bounding steps result from Lemma
5. Now, note that

bl
‖ϕ(pq)‖H

≥ 〈u, ϕ(pr)〉H − 2s
max
r +2

(
1 +

ηr + 2s
T
r

τq

)
(50)

then set α = 1 + (2ηr/τq) (α is not dependent on the
scale smax

r ; this is important) and use the conditional
from Equation 47 to get

ϕ(pr) ∈ ISr
(ϕ(pq), [bl, k̂(pq)])

⊆ ISr (ϕ(pq), [bl,K(pq, pr) + 2s
max
r +1‖ϕ(pq)‖H])

⊆ ISr (u, [〈u, ϕ(pr)〉H − 2s
max
r +2α,

〈u, ϕ(pr)〉H + 2s
max
r +1])

⊆ ISr (u, [〈u, ϕ(pr)〉H − 2s
max
r +2α,

〈u, ϕ(pr)〉H + 2s
max
r +2α]). (51)

This is true for each point pi of each node Ni in
Ri. Thus, if we can place a bound on the number of
points in the set given in Equation 51, then we are
placing a bound on |Ri| for any scale si. To this end,
we can use the definition of directional concentration
constant, to show that there exist γr points pj ∈ Sr
such that

ISr
(u, [〈u, ϕ(pr)〉H − 2sr+2α,

〈u, ϕ〉(pr)H + 2sr+2α])

⊆
γr⋃
j=1

BSr (pj , 2
sr+2α). (52)

By Lemma 3, each point pr of each node Nr ∈ R
must be separated by at least 2s

max
r , because each

point in R must have a parent with scale at least
smax
r +1. Thus, we must bound the number of balls of

radius 2s
max
r −1 that can be packed into the set defined

by Equation 52. For each pj , we have

|BSr (pj , 2
smax
r +2α)| ≤ c2r|BSr (pj , 2

smax
r −1α)|

≤ c3 log2 α
r |BSr

(pj , 2
smax
r −1)|.

This allows us to conclude that |R∗| ≤ γrc
(3 log2 α)
r

and therefore the total running time of the algorithm

is O(γrc
(7 log2 α)
r νN), and the theorem holds.

Note that if dual-tree FastMKS is being run with
the same set as the query set and reference set, ν = 1,
yielding a tighter bound.

10 Empirical evaluation

We evaluate single-tree and dual-tree FastMKS with
different kernels and datasets. For each experiment,
we query the top {1, 2, 5, 10} max-kernel candidates
and report the speedup over linear search (in terms
of the number of kernel evaluations performed dur-
ing the search). The cover tree and the algorithms are
implemented in C++ in the mlpack machine learn-
ing library [16].

10.1 Datasets

We use two different classes of datasets. First, we
use datasets with fixed-length objects. These in-
clude the MNIST dataset [38], the Isomap “Im-
ages” dataset, several datasets from the UCI machine
learning repository [3], three collaborative filtering
datasets (MovieLens, Netflix [4], Yahoo! Music [20]),
the LCDM astronomy dataset [44], the LiveJournal
blog moods text dataset [32] and a subset of the 80
Million Tiny Images dataset [61]. The sizes of the
datasets are presented in Table 2.

The second class of dataset we use are those with-
out fixed length representation. We use protein se-
quences from GenBank10.

10.2 Kernels

We consider the following kernels for the vector
datasets:

• linear: K(x, y) = xT y

• polynomial: K(x, y) = (xT y)2

• cosine: K(x, y) = (xT y)/(‖xT ‖‖y‖)

• polynomial, deg. 10: K(x, y) = (xT y)10

• Epanechnikov: K(x, y) = max(0, 1−‖x−y‖2/b2)

While the Epanechnikov kernel is normalized and
thus reduces to nearest neighbor search, we choose
it regardless to show the applicability of FastMKS
to a variety of kernels. It is important to remember

10See ftp://ftp.ncbi.nih.gov/refseq/release/complete.

16

ftp://ftp.ncbi.nih.gov/refseq/release/complete

Datasets |Sq| |Sr| dims
Y! Music 10000 624961 51
MovieLens 6040 3706 11
Opt-digits 450 1347 64
Physics 37500 112500 78
Homology 75000 210409 74
Covertype 100000 481012 55
LiveJournal 10000 10000 25327
MNIST 10000 60000 784
Netflix 17770 480189 51
Corel 10000 27749 32
LCDM 6000000 10777216 3
TinyImages 1000 1000000 384

Table 2: Details of the vector datasets. |Sq| and
|Sr| denote the number of objects in the query and
reference sets respectively and dims denotes the di-
mensionality of the sets.

that standard techniques for nearest neighbor search
should be able to perform the task faster—we do not
compare with those techniques in these experiments.

For the protein sequences, we use the p-spectrum
string kernel [42], which is a measure of string sim-
ilarity. The kernel value for two given strings is the
number of length-p substrings that appear in both
strings.

10.3 Implementation

For maximum performance, the implementation in
mlpack does not precisely follow the algorithms we
have given. By default, the cover tree is designed to
use a base of 2 during construction, but following the
authors’ observations, we find that a base of 1.3 seems
to give better performance results [8]. In addition, for
both the single-tree algorithms, we attempt to first
score nodes (and node combinations) whose kernel
values K(pq, pr) are higher, in hopes of tightening the
bounds B(Nq) and k∗(pq) more quickly.

Lastly, the Score() method as implemented in
mlpack is somewhat more complex: it attempts to
prune the node combination (Nq,Nr) with a looser
bound that does not evaluate K(pq, pr). If that is not
successful, Score() proceeds as in Algorithm 4 (or
2 in the single-tree case). This type of prune seems
to give 10–30% reductions in the number of kernel
evaluations (or more, depending on the dataset).

The mlpack implementation can be downloaded
from http://www.mlpack.org/ and its FastMKS im-
plementation includes both C++ library bindings for
FastMKS and each kernel we have discussed as well

as a fastmks executable that can be used to run
FastMKS easily from the command line. In addi-
tion, a tutorial can be found on the website, and the
source code is extensively documented.

10.4 Results

The results for the vector datasets are summarized
in Figure 5 and detailed for k = 1 in Tables 3 and
4. The tables also provide the number of kernel
evaluations calculated during the search for linear
search, single-tree FastMKS, and dual-tree FastMKS.
Speedups over a factor of 100 are highlighted in bold.
While the speedups range from anywhere between 1
(which indicates no speedup) to 50000, many datasets
give speedups of an order of magnitude or more.
As would be expected with the O(logN) bounds for
single-tree FastMKS and the O(N) bounds for dual-
tree FastMKS, larger datasets (such as LCDM) tend
to provide larger speedups. In the cases where large
datasets are used but small speedup values are ob-
tained, the conclusion must be that the expansion
constant cr and the directional concentration con-
stant γr for that dataset and kernel are large. In ad-
dition, the Epanechnikov kernel is parameterized by a
bandwidth b; this bandwidth will seriously affect the
runtime if it is too small (all kernel evaluations are 0)
or too large (all kernel evaluations are 1). We have
arbitrarily chosen 10 as our bandwidth for simplicity
in simulations, but for each dataset, it is certain that
a better bandwidth value that will provide additional
speedup exists.

Another observation is that the single-tree algo-
rithm tends to perform better than the dual-tree al-
gorithm, in spite of the better scaling of the dual-tree
algorithm. There are multiple potential explanations
for this phenomenon:

• The single-tree bounds given in Theorem 1
(Equation 10) and Theorem 3 (Equation 20) are
tighter than the dual-tree bounds of Theorem 2
(Equation 14) and Theorem 4 (Equation 23).

• The dual-tree algorithm’s runtime is also
bounded by the parameters ν, ηr, and τq,
whereas the single-tree algorithm is not. This
could mean that N would need to be very large
before the dual-tree algorithm became faster, de-
spite the fact that the dual-tree algorithm scales
with c7r and the single-tree algorithm scales with
c12r .

• The single-tree algorithm scales considers each
element in the set |Sq| linearly, but the dual-tree
algorithm is able to obtain max-kernel bounds

17

http://www.mlpack.org/

Figure 5: Speedups of single-tree and dual-tree FastMKS over linear scan with k = {1, 2, 5, 10}.

for many query points at once thanks to the use
of the second tree. Thus, the dual-tree algorithm
may require a much larger Sq before it outper-
forms the single-tree algorithm.

The results for the protein sequence data are shown
in Figure 6 and Table 5. The table shows that for con-
stant reference set size (649), the dual-tree algorithm
provides better scaling as the query set grows. This
agrees with the better scaling of dual-tree FastMKS
as exhibited in Theorem 8.

However, in every case in Table 5, the single-tree
algorithm provides better performance than the dual-
tree algorithm. This implies that the query sets and
reference sets would have to be possibly several or-
ders of magnitude larger for the dual-tree algorithm
to provide better speedups. With larger datasets,
the single-tree algorithm showed more than 3000x
speedup over linear scan. Other datasets may exhibit
better or worse scaling depending on the expansion
constant and directional concentration constant.

11 Approximate Extensions

For further scalability, we can develop an extension
of FastMKS that does not return the exact max-
kernel value but instead an approximation thereof.
Even though we are focusing on exact max-kernel
search, we wish to demonstrate that the tree based
method can be very easily extended to perform the
approximate max-kernel search. For any query pq,
we are seeking p̂(pq) = arg maxpr∈Sr K(pq, pr). Let

K(pq, p̂(pq)) = k̂(pq) (as before). Then approxima-
tion can be achieved in the following ways:

1. Absolute value approximation: for all queries
pq ∈ Sq, find pr ∈ Sr such that K(pq, pr) ≥
k̂(pq)− ε for some ε > 0.

2. Relative value approximation: for all queries
pq ∈ Sq, find pr ∈ Sr such that K(pq, pr) ≥
(1− ε)k̂(pq) for some ε > 011.

11Here we are assuming that k̂(pq) > 0. In the case where

k̂(pq) < 0, we seek a pr ∈ Sr such that K(pq , pr) > k̂(pq) −
ε|k̂(pq)|

18

Kernel evaluations Speedup
Kernel Dataset Linear scan Single-tree Dual-tree Single-tree Dual-tree
linear Y! Music 6.249B 859.1M 1.056B 7.27 5.91

MovieLens 22.38M 2.635M 2.790M 8.49 8.02
Optdigits 606.1k 333.2k 366.6k 1.82 1.65
Physics 4.219B 628.8M 852.9M 6.71 4.95

Bio 20.36B 100.2M 8.174B 203.2 2.49
Covertype 48.10B 35.06M 160.9M 1372 299.0

LiveJournal 100.0M 13.88M 36.09M 7.21 2.77
MNIST 600.0M 229.6M 288.2M 2.62 2.08
Netflix 8.532B 2.632B 2.979B 3.12 2.86
Corel 277.5M 6.626M 44.02M 41.88 6.30

LCDM 64.66T 1.566B 2.778B 41282 23269
TinyImages 100.0M 22.30M 35.70M 4.48 2.80

polynomial Y! Music 6.249B 2.187B 2.221B 2.86 2.81
MovieLens 22.38M 1.865M 1.833M 12.00 12.21
Optdigits 606.1k 235.1k 296.5k 2.58 2.04
Physics 4.219B 823.9M 1.017B 5.12 4.15

Bio 20.36B 1.538B 10.87B 13.23 1.87
Covertype 48.10B 30.65M 629.7M 1569 76.39

LiveJournal 100.0M 12.91M 38.16M 7.75 2.62
MNIST 600.0M 202.8M 266.8M 2.96 2.25
Netflix 8.532B 2.528B 2.953B 3.37 2.89
Corel 277.5M 4.687M 60.30M 59.20 4.60

LCDM 64.66T 1.171B 14.98B 55204 4316
TinyImages 100.0M 6.957M 34.32M 14.37 2.91

polynomial-deg10 Y! Music 6.249B 4.296B 4.310B 1.45 1.45
MovieLens 22.38M 2.814M 2.826M 7.96 7.92
Optdigits 606.1k 212.3k 318.2k 2.86 1.91
Physics 4.219B 1.441B 1.481B 2.93 2.91

Bio 20.36B 6.018B 12.45B 3.38 1.63
Covertype 48.10B 361.1M 13.78B 133.2 3.49

LiveJournal 100.0M 12.75M 43.25M 7.84 2.31
MNIST 600.0M 205.4M 277.1M 2.92 2.17
Netflix 8.532B 2.977B 3.470B 2.87 2.46
Corel 277.5M 19.68M 131.1M 14.10 2.12

LCDM 64.66T 8.124B 485.2B 7959 133.3
TinyImages 100.0M 1.076M 42.23M 92.96 2.37

cosine Y! Music 6.249B 849.6M 1.586B 7.36 3.94
MovieLens 22.38M 4.044M 8.322M 5.54 2.69
Optdigits 606.1k 190.0k 319.8k 3.19 1.90
Physics 4.219B 28.82M 140.0M 146.3 30.14

Bio 20.36B 14.40B 15.54B 1.41 1.31
Covertype 48.10B 50.15M 3.119B 959.2 15.42

LiveJournal 100.0M 99.23M 98.78M 1.01 1.01
MNIST 600.0M 237.0M 376.7M 2.53 1.59
Netflix 8.532B 3.426B 5.344B 2.49 1.60
Corel 277.5M 16.22M 61.95M 17.10 4.48

LCDM 64.66T 1.058B 112.9B 61063 572.6
TinyImages 100.0M 50.49M 92.36M 1.98 1.02

Table 3: Single-tree and dual-tree FastMKS on vector datasets with k = 1.

19

Kernel evaluations Speedup
Kernel Dataset Linear scan Single-tree Dual-tree Single-tree Dual-tree

Epanechnikov Y! Music 6.249B 3.439B 3.630B 1.82 1.72
MovieLens 22.38M 3.243M 4.471M 6.90 5.01
Optdigits 606.1k 606.1k 606.1k 1.00 1.00
Physics 4.219B 957.6M 1.213B 4.40 3.48

Bio 20.36B 20.25B 20.25B 1.01 1.01
Covertype 48.10B 48.10B 48.10B 1.00 1.00

LiveJournal 100.0M 99.57M 99.15M 1.00 1.01
MNIST 600.0M 600.0M 600.0M 1.00 1.00
Netflix 8.532B 7.602B 8.293B 1.12 1.03
Corel 277.5M 18.53M 119.9M 14.98 2.31

LCDM 64.66T 72.32B 119.0B 894.1 543.3
TinyImages 100.0M 42.49M 87.99M 2.35 1.14

Table 4: Single-tree and dual-tree FastMKS on vector datasets with the Epanechnikov kernel with k = 1.

Kernel evaluations Speedup
|Sq| |Sr| Linear scan Single-tree Dual-tree Single-tree Dual-tree
391 649 253.8k 5.255k 43.27k 48.29 5.87
1091 649 708.1k 14.99k 122.7k 47.25 5.77
2635 649 1.710M 36.04k 327.7k 47.45 5.22
8604 649 5.584M 115.3k 832.9k 48.43 6.70
37606 649 24.41M 512.9k 3.763M 47.58 6.49
63180 649 41.00M 848.1k 4.999M 48.35 8.20
63180 391 24.70M 484.3k 3.511M 51.01 7.04
63180 1091 68.93M 834.9k 7.529M 82.56 9.16
63180 2635 166.5M 927.8k 22.95M 179.4 7.25
63180 8604 543.6M 692.5k 32.26M 785.1 16.85
63180 37606 2.376B 743.2k 65.09M 3197 36.50
63180 63180 3.992B 1.140M 150.2M 3500 26.59
391 391 152.8k 2.973k 30.68k 51.42 4.98
1091 1091 1.190M 14.96k 183.2k 79.56 6.50
2635 2635 6.943M 43.95k 1.689M 158.0 4.11
8604 8604 323.6M 104.4k 13.76M 783.2 12.79
37606 37606 1.414B 470.2k 39.70M 3007 35.62
63180 63180 3.992B 1.141M 150.2M 3500 26.59

Table 5: Single-tree and dual-tree FastMKS on protein sequences with k = 1.

20

Figure 6: Speedups of single-tree and dual-tree FastMKS over linear scan for protein sequences with k =
{1, 2, 5, 10}.

3. Rank approximation: return pr ∈ Sr such that
|{p′r ∈ Sr : K(pq, p

′
r) > K(pq, pr)}| ≤ τ .

The following three subsections present how single-
tree FastMKS can be easily extended for approximate
max-kernel search.

11.1 Absolute value approximation

From Theorem 1 and Algorithm 2, at any point in the
single-tree algorithm with query point pq and node
Ni and best candidate kernel value k∗(pq), we know
that we must descend Ni if

Kmax(pq,Ni) ≥ k∗(pq) (53)

but with absolute value approximation for some ε, we
can loosen the condition to

Kmax(pq,Ni) ≥ k∗(pq) + ε (54)

which can be simplified:

K(pq, pi) + λi

√
K(pq, pq) ≥ k∗(pq) + ε

K(pq, pi) + λi

√
K(pq, pq) ≥ K(pq, pi) + ε

λi

√
K(pq, pq) ≥ ε. (55)

This yields that we can prune if ε > λi
√
K(pq, pq).

While this is looser than possible, it has the advan-
tage that K(pq, pi) does not need to be calculated to
prune Ni. This yields a modified Score() algorithm,
given in Algorithm 6.

In the dual-tree case, we must descend (Nq,Nr) if

Kmax(Nq,Nr) ≥ B(Nq). (56)

Using absolute value approximation this condition
loosens to

Kmax(Nq,Nr) ≥ B(Nq) + ε (57)

but we cannot easily simplify this to eliminate the
evaluation of K(pq, pr) due to the complexity of
B(Nq). A modified Score() function for dual-tree

21

Algorithm 6 Score(pq, Nr) for absolute value ap-
proximation of FastMKS.

1: Input: query point pq, reference space tree node
Nr, max-kernel candidate p∗ for pq and corre-
sponding max-kernel value k∗, absolute value ap-
proximation ε

2: Output: a score for the node, or ∞ if the node
can be pruned

3: if ε > λr
√
K(pq, pq) then

4: return ∞
5: else if Kmax(pq,Nr) < k∗ then
6: return ∞
7: else
8: return Kmax(pq,Nr)
9: end if

Algorithm 7 Score(Nq, Nr) for absolute value ap-
proximation of FastMKS.

1: Input: query node Nq, reference node Nr, abso-
lute value approximation ε

2: Output: a score for the node combination
(Nq,Nr) or ∞ if the combination can be pruned

3: if Kmax(Nq,Nr) < B(Nq) + ε then
4: return ∞
5: else
6: return Kmax(Nq,Nr)
7: end if

absolute value approximate FastMKS is given in Al-
gorithm 7.

11.2 Relative value approximation

Relative value approximation is a more useful form
of approximation, because the user does not need
knowledge of k̂(pq) to set ε reasonably. However, care
has to be taken for relative value approximation be-
cause there is no guarantee that k̂(pq) > 0.

We can take Equation 53 and modify it for ε-
relative-value-approximate pruning. In this case, we
must descend Ni if

Kmax(pq,Ni) ≥ (1 + ε)k∗(pq) (58)

and similar algebraic manipulations yield

K(pq, pi) + λi

√
K(pq, pq) ≥ (1 + ε)k∗(pq)

K(pq, pi) + λi

√
K(pq, pq) ≥ K(pq, pi) + εk∗(pq)

λi

√
K(pq, pq) ≥ εk∗(pq)

Algorithm 8 Score(pq, Nr) for relative value ap-
proximation of FastMKS.

1: Input: query point pq, reference space tree node
Nr, max-kernel candidate p∗ for pq and corre-
sponding max-kernel value k∗, relative value ap-
proximation ε

2: Output: a score for the node, or ∞ if the node
can be pruned

3: if k∗ > (λr/ε)
√
K(pq, pq) then

4: return ∞
5: else if Kmax(pq,Nr) < k∗ then
6: return ∞
7: else
8: return Kmax(pq,Nr)
9: end if

Algorithm 9 Score(Nq, Nr) for relative value ap-
proximation of FastMKS.

1: Input: query node Nq, reference node Nr, rela-
tive value approximation ε

2: Output: a score for the node combination
(Nq,Nr) or ∞ if the combination can be pruned

3: if Kmax(Nq,Nr) < (1 + ε)B(Nq) then
4: return ∞
5: else
6: return Kmax(Nq,Nr)
7: end if

meaning we can prune a node Ni when k∗(pq) >

(λi/ε)
√
K(pq, pq). This is looser than possible (like

the absolute-value approximation bound) but has the
advantage that K(pq, pi) does not need to be calcu-
lated to prune Ni. This yields a modified Score()

algorithm, given in Algorithm 8.
Similar to absolute value approximation, we can

loosen the condition for recursion given in Equation
56 to obtain the rule

Kmax(Nq,Nr) ≥ (1 + ε)B(Nq). (59)

This rule does not easily simplify, as in the case
of the single-tree relative value approximation rule;
this is due to the complexity of B(Nq). A modified
Score() function is given in Algorithm 9.

11.3 Rank Approximation

Rank approximation is a relatively new approxima-
tion paradigm introduced by Ram et al. [58]. The
idea is to return a max-kernel candidate p′r for query
pq, reference set Sr, and parameter τ such that p′r is
in the top τ max-kernel results with high probability.

22

That is, for pq, Sr, and τ , find an object pr ∈ Sr such
that

|{p′r ∈ Sr : K(pq, p
′
r) > K(q, pr)}| < τ. (60)

This is often a better technique than absolute-
value-approximate search, which requires a tuned
parameter ε for each dataset, and relative-value-
approximate search, which may return useless results
when the values of K(pq, pr) are very close for all
pr ∈ Sr.

The idea presented in [58] is to draw a set of sam-
ples S′r large enough that the maximum kernel value
between pq and any point in S′r (call this k∗) is such
that

Pr (|{p′r ∈ Sr : K(pq, p
′
r) > k∗}| < τ) ≥ 1− δ. (61)

Simplifying the formulation presented in [58], the
probability of always missing the top τ values for a
given query pq after k samples with replacement is
given by (1 − (τ/n))k, where |Sr| = n. If we want a
(1 − δ) success rate of sampling, then we want k to
be such that

(
1− τ

n

)k
< δ, and

(
1− τ

n

)k−1
> δ,

which gives

k =

⌈
log δ

log
(
1− τ

n

)⌉ .
Following the logic of [58], if a node Ni con-

tains more than (n/k) points (|Dp
i | > (n/k)), then

we can prune the node after we randomly sample
d(k/n)|Dp

i |e points from |Dp
i |. In addition to that,

the standard FastMKS pruning rules still apply. An
updated single-tree Score() function is given in Al-
gorithm 10.

An extension of this for a dual-tree algorithm is
straightforward; for a reference node Nr, if |Dp

r | >
(n/k), then we can sample it for each query point
pq ∈ Dp

q and prune the node combination. A Score()

function is given in Algorithm 11.

12 Conclusion

In this manuscript we have described two general-
purpose algorithms for solving the max-kernel prob-
lem (Equation 1) when the kernel satisfies the non-
restrictive condition that it is positive semidefinite (a

Algorithm 10 Score(pq, Nr) for rank approxima-
tion of FastMKS.

1: Input: query point pq, reference space tree node
Nr, max-kernel candidate p∗ for pq and corre-
sponding max-kernel value k∗, required number
of samples k for τ -rank approximation in a refer-
ence set of size n

2: Output: a score for the node, or ∞ if the node
can be pruned

3: if |Dp
r | ≤ (n/k) then

4: S′r ← d(k/n)|Dp
r |e random samples from |Dp

r |
5: for each p′r ∈ S′r do
6: BaseCase(pq, p′r)
7: end for
8: return ∞
9: else if Kmax(pq,Nr) < k∗ then

10: return ∞
11: else
12: return Kmax(pq,Nr)
13: end if

Mercer kernel). With the exception of the publica-
tion this expanded work is based on [18], there exists
no technique as general as ours for max-kernel search
other than linear scan, which, for a query set Sq and
a reference set Sr both of size N , scales quadratically
O(N2).

We have detailed a generic tree-independent algo-
rithm called FastMKS based on the tree-independent
framework of [17] for both single-tree max-kernel
search (Algorithms 1 and 2) and dual-tree max-kernel
search (Algorithms 1 and 4). When the algorithm
is using cover trees with a query set Sq and a ref-
erence set Sr both of size N , we have shown scaling
of O(N logN) for the single-tree algorithm (Theorem
6) and O(N) for the dual-tree algorithm (Theorem 8)
though it should be remembered that these bounds
depend on both the expansion constant and the di-
rectional concentration constant of the dataset.

Our tree-independent algorithms can be applied to
any type of space tree that can be built using only
distance evaluations between points in the dataset.
Thus, even space trees designed after the publica-
tion of this paper can be easily paired with a prun-
ing single-tree traversal or pruning dual-tree traversal
and the base case and scoring functions given in this
paper to produce a provably correct implementation
of single-tree or dual-tree FastMKS (Theorems 5 and
7).

The empirical performance of our algorithms were
evaluated after their implementation in mlpack [16].
Both the single-tree and dual-tree algorithms can pro-
duce speedups of over 50000, but despite the better

23

Algorithm 11 Score(Nq, Nr) for rank approxi-
mation of FastMKS.

1: Input: query node Nq, reference node Nr, re-
quired number of samples k for τ rank approxi-
mation in a reference set of size n

2: Output: a score for the node combination
(Nq,Nr) or ∞ if the combination can be pruned

3: if |Dp
r | ≤ (n/k) then

4: for each pq ∈ Dp
q do

5: S′r ← d(k/n)|Dp
r |e random samples from

|Dp
r |

6: for each p′r ∈ S′r do
7: BaseCase(pq, p′r)
8: end for
9: end for

10: return ∞
11: else if Kmax(Nq,Nr) > B(Nq) then
12: return ∞
13: else
14: return Kmax(Nq,Nr)
15: end if

asymptotic scaling of the dual-tree algorithm, it tends
to be outperformed by the single-tree algorithm. We
suspect that larger datasets are necessary to show
the better scaling characteristics of the dual-tree al-
gorithm.

Our reference implementation of single-tree and
dual-tree FastMKS is open-source and available as
part of the mlpack machine learning library, start-
ing with version 1.0.6. The implementation is exten-
sively documented and there is also a tutorial on the
website (http://www.mlpack.org/).

12.1 Future improvements/extensions

Though we have shown significant speedups for the
single-tree and dual-tree FastMKS algorithms, we be-
lieve that there is room for further improvements and
extensions. Below we list two possible paths that are
interesting and warrant further investigation.

12.1.1 Tighter bounds for specific kernels

In Theorems 3 and 4 we described a tighter bound
for normalized kernels (K(x, x) = 1 ∀x). It is our in-
tuition that similar tighter bounds can be developed
for other specific types of Mercer kernels.

This may be especially applicable in domain-
specific kernels such as string kernels or graph ker-
nels. Any kernel that has some known structure on
how points are mapped to H may be bounded more

tightly than the general Mercer kernel bounds given
in Equations 10 and 14.

12.1.2 Domain-specific applications

In the introduction, we mentioned the wide applica-
bility of max-kernel search, discussing its use in im-
age retrieval, document retrieval, collaborative filter-
ing, and even finding similar protein/DNA sequences.
That list only contains a few of the numerous max-
kernel search problems that arise ubiquitiously in
countless fields (not just computing-related fields).

In many of these fields, there are existing domain-
specific solutions. One example in genomics is
BLAST (Basic Local Alignment Search Tool) [1], a
utility that searches for similarity between biologi-
cal sequences. Another tool of this sort is the older
FASTA algorithm [53]. Both of these algorithms
are improvements over linear scan with the Smith-
Waterman alignment score [60]. However, in contrast
with its large speedups, BLAST cannot guarantee ex-
act results.

The Smith-Waterman alignment score can easily
be shown to be a Mercer kernel; therefore, FastMKS
could be used to give speedups over linear scan and
it would also return provably exact results. Further-
more, approximation extensions to FastMKS could
provide additional speedups by relaxing the exact re-
sult constraint, potentially making FastMKS compet-
itive with BLAST.

12.1.3 Massive parallelism

The implementation of FastMKS that we have pro-
vided requires that the datasets and trees both fit
into memory. However, with today’s datasets becom-
ing larger and larger, this is often not feasible. Thus,
a massively parallel implementation of FastMKS is
desirable.

In the context of tree-independent dual-tree algo-
rithms (of which FastMKS is one), one parallelization
strategy is to parallelize the traversal [17]. Then, the
parallel traversal can be applied with a type of space
tree and the FastMKS BaseCase() and Score()

functions; there is no modification necessary to the
base case and pruning rule. One recent work that
may be generalizable to a massively parallel pruning
dual-tree traversal is that of Lee et al. [41], who pro-
posed a distributed framework in the context of ker-
nel summations. Other related parallelism schemes
could likely be adapted to dual-tree FastMKS [17, 12]
to provide significant speedup and enable FastMKS
to be performed on huge datasets.

24

http://www.mlpack.org/

References

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers,
and D.J. Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–
410, 1990.

[2] S. Arya, D.M. Mount, N.S. Netanyahu, R. Sil-
verman, and A.Y. Wu. An optimal algorithm
for approximate nearest neighbor searching fixed
dimensions. Journal of the ACM (JACM), 1998.

[3] K. Bache and M. Lichman. UCI Machine Learn-
ing Repository, 2013. http://archive.ics.

uci.edu/ml.

[4] J. Bennett and S. Lanning. The Netflix Prize.
In Proceedings of the KDD Cup and Workshop,
pages 3–6, 2007.

[5] J.L. Bentley. Multidimensional binary search
trees used for associative searching. Communi-
cations of the ACM, 18(9):509–517, 1975.

[6] J.L. Bentley and J.H. Friedman. Fast algorithms
for constructing minimal spanning trees in coor-
dinate spaces. IEEE Transactions on Comput-
ers, 100(2):97–105, 1978.

[7] J.L. Bentley and J.H. Friedman. Data structures
for range searching. ACM Computing Surveys
(CSUR), 11(4):397–409, 1979.

[8] A. Beygelzimer, S.M. Kakade, and J. Langford.
Cover trees for nearest neighbor. In Proceedings
of the 23rd International Conference on Machine
Learning (ICML ’06), pages 97–104, 2006.

[9] A. Beygelzimer, S.M. Kakade, and J.C. Lang-
ford. Cover Trees for Nearest Neighbor (longer
version). Paper URL.

[10] K.M. Borgwardt, C.S. Ong, S. Schönauer,
S. V. N. Vishwanathan, A.J. Smola, and H.P.
Kriegel. Protein function prediction via graph
kernels. Bioinformatics, 21(suppl. 1):i47–i56,
2005.

[11] L. Cayton. Fast nearest neighbor retrieval for
Bregman divergences. In Proceedings of the 25th
International Conference on Machine Learning
(ICML ’08), pages 112–119, 2008.

[12] L. Cayton. Accelerating nearest neighbor
search on manycore systems. In Proceedings
of the IEEE 26th International Parallel and
Distributed Processing Symposium (IPDPS ’12),
pages 402–413, 2012.

[13] M.S. Charikar. Similarity estimation techniques
from rounding algorithms. In Proceedings of
the 34th Annual ACM Symposium on Theory of
Computing (STOC ’02), pages 380–388, 2002.

[14] K.L. Clarkson. Nearest neighbor queries in met-
ric spaces. Discrete & Computational Geometry,
22(1):63–93, 1999.

[15] K.L. Clarkson. Nearest-neighbor searching and
metric space dimensions. Nearest-Neighbor
Methods for Learning and Vision: Theory and
Practice, pages 15–59, 2006.

[16] R.R. Curtin, J.R. Cline, N.P. Slagle, W.B.
March, P. Ram, N.A. Mehta, and A.G. Gray.
MLPACK: A scalable C++ machine learning li-
brary. Journal of Machine Learning Research,
14:801–805, 2013.

[17] R.R. Curtin, W.B. March, P. Ram, D.V. An-
derson, A.G. Gray, and C.L. Isbell Jr. Tree-
independent dual-tree algorithms. In Proceed-
ings of the 30th International Conference on Ma-
chine Learning (ICML ’13), 2013.

[18] R.R. Curtin, P. Ram, and A.G. Gray. Fast exact
max-kernel search. In SIAM International Con-
ference on Data Mining (SDM ’13), pages 1–9,
2013.

[19] S. Dasgupta and Y. Freund. Random projection
trees and low dimensional manifolds. In Pro-
ceedings of the 40th Annual ACM Symposium on
Theory Of Computing (STOC ’08), pages 537–
546, 2008.

[20] G. Dror, N. Koenigstein, Y. Koren, and
M. Weimer. The Yahoo! Music Dataset and
KDD-Cup’11. Journal of Machine Learning Re-
search (Proceedings Track), 18:8–18, 2012.

[21] R.A. Finkel and J.L. Bentley. Quad trees: a data
structure for retrieval on composite keys. Acta
Informatica, 4(1):1–9, 1974.

[22] J.H. Friedman, J.L. Bentley, and R.A. Finkel.
An algorithm for finding best matches in loga-
rithmic expected time. ACM Transactions on
Mathematical Software (TOMS), 3(3):209–226,
1977.

[23] K. Fukunaga and P. M. Nagendra. A branch-
and-bound algorithm for computing k-nearest-
neighbors. IEEE Transactions on Computers,
100(7):750–753, 1975.

25

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://hunch.net/~jl/projects/cover_tree/paper/paper.pdf

[24] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In Pro-
ceedings of the Twenty-Fifth International Con-
ference on Very Large Data Bases (VLDB ’99),
volume 99, pages 518–529, 1999.

[25] A.G. Gray and A.W. Moore. ‘N-Body’ problems
in statistical learning. In Advances in Neural
Information Processing Systems 14 (NIPS ’01),
volume 4, pages 521–527, 2002.

[26] A.G. Gray and A.W. Moore. Nonparamet-
ric density estimation: Toward computational
tractability. In SIAM International Conference
on Data Mining (SDM ’03), pages 203–211,
2003.

[27] V.J. Hodge and J. Austin. A comparison of stan-
dard spell checking algorithms and a novel bi-
nary neural approach. IEEE Transactions on
Knowledge and Data Engineering, 15(5):1073–
1081, 2003.

[28] M.P. Holmes, A.G. Gray, and C.L. Isbell Jr.
QUIC-SVD: Fast SVD using cosine trees. In
Advances in Neural Information Processing Sys-
tems (NIPS ’08), volume 21, pages 673–680,
2009.

[29] C.L. Jackins and S.L. Tanimoto. Oct-trees and
their use in representing three-dimensional ob-
jects. Computer Graphics and Image Processing,
14(3):249–270, 1980.

[30] P. Kar and H. Karnick. Random feature maps
for dot product kernels. In Proceedings of the
22nd International Conference on Artificial In-
telligence and Statistics (AISTATS ’12), vol-
ume 22, pages 583–591, 2012.

[31] D.R. Karger and M. Ruhl. Finding nearest
neighbors in growth-restricted metrics. In Pro-
ceedings of the Thirty-Fourth Annual ACM Sym-
posium on Theory of Computing (STOC ’02),
pages 741–750. ACM, 2002.

[32] S. Kim, F. Li, G. Lebanon, and I. Essa. Be-
yond sentiment: The manifold of human emo-
tions. In Proceedings of the 23rd International
Conference on Artificial Intelligence and Statis-
tics (AISTATS ’13), pages 360–369, 2013.

[33] M. Klaas, M. Briers, N. de Freitas, A. Doucet,
S. Maskell, and D. Lang. Fast particle smooth-
ing: if I had a million particles. In Proceed-
ings of the 23rd International Conference on
Machine learning (ICML ’06), pages 481–488.
ACM, 2006.

[34] W.L.G. Koontz, P.M. Narendra, and K. Fuku-
naga. A branch and bound clustering algorithm.
IEEE Transactions on Computers, 100(9):908–
915, 1975.

[35] Y. Koren, R. M. Bell, and C. Volinsky. Matrix
factorization techniques for recommender sys-
tems. IEEE Computer, 42(8):30–37, 2009.

[36] R. Krauthgamer and J.R. Lee. Navigating nets:
simple algorithms for proximity search. In Pro-
ceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’04),
pages 798–807, 2004.

[37] B. Kulis and K. Grauman. Kernelized locality-
sensitive hashing for scalable image search. In
Proceedings of the 12th IEEE International Con-
ference on Computer Vision (ICCV ’09), 2009.

[38] Y. LeCun, C. Cortes, and C.J.C. Burges. MNist
dataset, 2000. http://yann.lecun.com/exdb/

mnist/.

[39] D. Lee and A.G. Gray. Faster Gaussian summa-
tion: theory and experiment. In Proceedings of
the Twenty-Second Conference on Uncertainty
in Artificial Intelligence (UAI ’06), 2006.

[40] D. Lee and A.G. Gray. Fast high-dimensional
kernel summations using the Monte Carlo mul-
tipole method. Advances in Neural Information
Processing Systems 21 (NIPS ’08), 21, 2009.

[41] D. Lee, R.W. Vuduc, and A.G. Gray. A
distributed kernel summation framework for
general-dimension machine learning. In SIAM
International Conference on Data Mining (SDM
’12), pages 391–402, 2012.

[42] C. Leslie, E. Eskin, and W.S. Noble. The spec-
trum kernel: A string kernel for SVM protein
classification. In Proceedings of the Pacific Sym-
posium on Biocomputing, pages 564–575, 2002.

[43] T. Liu, A.W. Moore, K. Yang, and A.G. Gray.
An investigation of practical approximate near-
est neighbor algorithms. In Advances in Neural
Information Processing Systems 18 (NIPS ’04),
pages 825–832, 2004.

[44] R. Lupton, J.E. Gunn, Z. Ivezic, G.R. Knapp,
S. Kent, and N. Yasuda. The SDSS imaging
pipelines. Astronomical Data Analysis Software
and Systems X, 238:269–278, 2001.

26

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

[45] W.B. March, A.J. Connolly, and A.G. Gray. Fast
algorithms for comprehensive n-point correla-
tion estimates. In Proceedings of the 18th ACM
SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD ’12),
pages 1478–1486, 2012.

[46] W.B. March, P. Ram, and A.G. Gray. Fast
Euclidean minimum spanning tree: algorithm,
analysis, and applications. In Proceedings of
the 16th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining
(KDD ’10), pages 603–612, 2010.

[47] J. McNames. A fast nearest-neighbor algorithm
based on a principal axis search tree. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 23(9):964–976, 2001.

[48] A.W. Moore. Very fast EM-based mixture model
clustering using multiresolution kd-trees. Ad-
vances in Neural Information Processing Sys-
tems 11 (NIPS ’98), pages 543–549, 1999.

[49] A.W. Moore. The Anchors Hierarchy: Using
the triangle inequality to survive high dimen-
sional data. In Proceedings of the Sixteenth Con-
ference on Uncertainty in Artificial Intelligence
(UAI ’00), pages 397–405. Morgan Kaufmann
Publishers Inc., 2000.

[50] M. Muja and D.G. Lowe. Fast approximate near-
est neighbors with automatic algorithm config-
uration. In International Conference on Com-
puter Vision Theory and Applications (VIS-
APP), 2009.

[51] K. Müller, A. Smola, G. Rätsch, B. Schölkopf,
J. Kohlmorgen, and V. Vapnik. Predicting time
series with Support Vector Machines. Proceed-
ings of the 7th International Conference on Arti-
ficial Neural Networks (ICANN ’97), pages 999–
1004, 1997.

[52] P.M. Narendra and K. Fukunaga. A branch
and bound algorithm for feature subset selection.
IEEE Transactions on Computers, 100(9):917–
922, 1977.

[53] W.R. Pearson and D.J. Lipman. Improved
tools for biological sequence comparison. Pro-
ceedings of the National Academy of Sciences,
85(8):2444–2448, 1988.

[54] F. P. Preparata and M. I. Shamos. Compu-
tational Geometry: An Introduction. Springer,
1985.

[55] A. Rahimi and B. Recht. Random Features for
Large-scale Kernel Machines. Advances in Neu-
ral Information Processing Systems 20 (NIPS
’07), pages 1177–1184, 2008.

[56] P. Ram and A.G. Gray. Maximum inner-product
search using cone trees. In Proceedings of
the 18th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining
(KDD ’12), pages 931–939, 2012.

[57] P. Ram, D. Lee, W.B. March, and A.G. Gray.
Linear-time algorithms for pairwise statistical
problems. Advances in Neural Information Pro-
cessing Systems 22 (NIPS ’09), 23:1527–1535,
2010.

[58] P. Ram, D. Lee, H. Ouyang, and A.G. Gray.
Rank-approximate nearest neighbor search: Re-
taining meaning and speed in high dimensions.
Advances in Neural Information Processing Sys-
tems 22 (NIPS ’09), 22:1536–1544, 2010.

[59] Y. Shen, A.Y. Ng, and M. Seeger. Fast Gaus-
sian process regression using kd-trees. Advances
in Neural Information Processing Systems 18
(NIPS ’05), pages 1225–1232, 2006.

[60] T. F. Smith and M. S. Waterman. Identification
of common molecular subsequences. Journal of
Molecular Biology, 147(1):195–197, 1981.

[61] A. Torralba, R. Fergus, and W.T. Freeman. 80
Million Tiny Images: A large data set for non-
parametric object and scene recognition. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 30(11):1958–1970, 2008.

[62] J.K. Uhlmann. Satisfying general proxim-
ity/similarity queries with metric trees. Infor-
mation Processing Letters, 40(4):175–179, 1991.

[63] P. Wang, D. Lee, A.G. Gray, and J.M. Rehg.
Fast mean shift with accurate and stable con-
vergence. In Workshop on Artificial Intelligence
and Statistics (AISTATS ’07), 2007.

[64] P.N. Yianilos. Data structures and algorithms
for nearest neighbor search in general metric
spaces. In Proceedings of the Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA ’93), pages 311–321. Society for Indus-
trial and Applied Mathematics, 1993.

27

	Max-kernel search
	Related work
	Unnormalized kernels

	Speedups via trees
	Analysis of the problem
	Reduction to nearest neighbor search
	Hardness of max-kernel search

	Indexing points in H
	Bounding the kernel value
	Single-tree algorithm
	Single-tree runtime analysis
	Dual-tree algorithm
	Dual-tree runtime analysis
	Empirical evaluation
	Datasets
	Kernels
	Implementation
	Results

	Approximate Extensions
	Absolute value approximation
	Relative value approximation
	Rank Approximation

	Conclusion
	Future improvements/extensions
	Tighter bounds for specific kernels
	Domain-specific applications
	Massive parallelism

