
Collaborative �ltering via matrix decomposition in mlpack

Siddharth Agrawal siddharth.950@gmail.com
Ryan R. Curtin ryan@ratml.org
Sumedh Ghaisas sumedhghaisas@gmail.com
Mudit Raj Gupta mudit.raaj.gupta@gmail.com

Recommendation systems are particularly useful in the real world, notably in the �elds

of e-commerce and behavior prediction. Because of this, there are several new techniques

for recommendation systems every year. Often, these techniques are based on matrix fac-

torization; for instance, a matrix decomposition model won the Net�ix prize in 2009 (Koren

et al., 2009). The key to this approach is the representation of the known ratings as an

incomplete user-item rating matrix M ∈ Rn×m, where Mij (if known) is the rating of item

j by user i. The matrix M is then assumed to be low-rank, and decomposed: M = WH.

The wide, ever-increasing variety of matrix decomposition techniques has led to a frac-

tured software landscape, with some techniques being widely available and others only avail-

able in one or two places. Further, recent attempts to unify this landscape, such as PREA

(Lee et al., 2012) and recommenderlab (Hahsler, 2011), which both provide APIs for the

development of new techniques, tend to be slow in practice. This situation has motivated us

to develop an e�cient matrix factorization framework for collaborative �ltering, cf, as part

ofmlpack, a C++ machine learning library (Curtin et al., 2013). This framework primarily

targets two types of users: data scientists who want to quickly apply matrix factorization

techniques, and machine learning researchers who want to implement their own techniques.

Users who are interested in applying matrix factorization may do so easily through

mlpack's command-line interface; an example is below:

$ cf -i movielens-1m-train.csv -a RegSVD �rank 20 -o recommendations.csv

Researchers who wish to implement their own matrix factorization algorithms on top of

the existing framework in mlpack have several options open to them:

• If the factorization technique is alternating (i.e. update W , update H, repeat until

convergence), only two functions must be supplied: WUpdate() and HUpdate().

• If the factorization technique is more general, only an Apply() function must be sup-

plied, which takes M as input and returns W and H as output.

• The existing factorization techniques (NMF, RegularizedSVD, QUIC_SVD,

SVDBatchFactorizer, SVDIncompleteIncrementalFactorizer, and

SVDCompleteIncrementalFactorizer) may be adapted or tuned.

The implementations available in mlpack are e�cient; they outperform other matrix

decomposition implementations. For example, on our test system, the mlpack regularized

SVD implementation decomposes the MovieLens-1M dataset (1 million ratings) in approx-

imately 16 seconds with an RMSE of 0.8838, whereas with the same parameters, PREA

takes approximately 335 seconds with an RMSE of 0.8850. A tutorial may be found at

http://www.mlpack.org/doxygen.php?doc=cftutorial.html; the code may be found at

https://github.com/mlpack/mlpack/ and https://mloss.org/software/view/152/.

1

http://www.mlpack.org/doxygen.php?doc=cftutorial.html
https://github.com/mlpack/mlpack/
https://mloss.org/software/view/152/


References

R.R. Curtin, J.R. Cline, N.P. Slagle, W.B. March, P. Ram, N.A. Mehta, and A.G. Gray.

MLPACK: A scalable C++ machine learning library. The Journal of Machine Learning

Research, 14:801�805, 2013.

M. Hahsler. recommenderlab: A framework for developing and testing recommendation

algorithms. 2011.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender sys-

tems. Computer, (8):30�37, 2009.

J. Lee, M. Sun, and G. Lebanon. PREA: Personalized recommendation algorithms toolkit.

The Journal of Machine Learning Research, 13(1):2699�2703, 2012.

2


