
Detecting Adversarial Samples from Artifacts

Reuben Feinman 1 Ryan R. Curtin 1 Saurabh Shintre 2 Andrew B. Gardner 1

Abstract
Deep neural networks (DNNs) are powerful non-
linear architectures that are known to be robust
to random perturbations of the input. How-
ever, these models are vulnerable to adversarial
perturbations—small input changes crafted ex-
plicitly to fool the model. In this paper, we ask
whether a DNN can distinguish adversarial sam-
ples from their normal and noisy counterparts.
We investigate model confidence on adversarial
samples by looking at Bayesian uncertainty esti-
mates, available in dropout neural networks, and
by performing density estimation in the subspace
of deep features learned by the model. The result
is a method for implicit adversarial detection that
is oblivious to the attack algorithm. We evalu-
ate this method on a variety of standard datasets
including MNIST and CIFAR-10 and show that
it generalizes well across different architectures
and attacks. Our findings report that 85-93%
ROC-AUC can be achieved on a number of stan-
dard classification tasks with a negative class that
consists of both normal and noisy samples.

1. Introduction
Deep neural networks (DNNs) are machine learning tech-
niques that impose a hierarchical architecture consisting of
multiple layers of nonlinear processing units. In practice,
DNNs achieve state-of-the-art performance for a variety of
generative and discriminative learning tasks from domains
including image processing, speech recognition, drug dis-
covery and genomics (LeCun et al., 2015).

Although DNNs are known to be robust to noisy inputs
(Fawzi et al., 2016), they have been shown to be vulnera-
ble to specially-crafted adversarial samples (Szegedy et al.,
2014; Goodfellow et al., 2015). These samples are con-
structed by taking a normal sample and perturbing it, ei-
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Figure 1. Examples of normal (top), noisy (middle) and adversar-
ial (bottom) MNIST samples for a convnet. Adversarial samples
were crafted via the Basic Iterative Method (Kurakin et al., 2017)
and fool the model into misclassifying 100% of the time.

ther at once or iteratively, in a direction that maximizes the
chance of misclassification. Figure 1 shows some exam-
ples of adversarial MNIST images alongside noisy images
of equivalent perturbation size. Adversarial attacks which
require only small perturbations to the original inputs can
induce high-efficacy DNNs to misclassify at a high rate.
Some adversarial samples can also induce a DNN to output
a specific target class (Papernot et al., 2016b). The vul-
nerability of DNNs to such adversarial attacks highlights
important security and performance implications for these
models (Papernot et al., 2016b). Consequently, signifi-
cant effort is ongoing to understand and explain adversar-
ial samples and to design defenses against them (Szegedy
et al., 2014; Goodfellow et al., 2015; Papernot et al., 2016c;
Tanay & Griffin, 2016; Metzen et al., 2017).

Using the intuition that adversarial samples lie off the true
data manifold, we devise two novel features that can be
used to detect adversarial samples:

• Density estimates, calculated with the training set in
the feature space of the last hidden layer. These are
meant to detect points that lie far from the data mani-
fold.

• Bayesian uncertainty estimates, available in dropout
neural networks. These are meant to detect when
points lie in low-confidence regions of the input space,
and can detect adversarial samples in situations where
density estimates cannot.

When both of these features are used as inputs to a simple
logistic regression model, we observe effective detection
of adversarial samples, achieving an ROC-AUC of 92.6%
on the MNIST dataset with both noisy and normal samples
as the negative class. In Section 2 we provide the relevant
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background information for our approach, and in Section
3 we briefly review a few state-of-the-art adversarial at-
tacks. Then, we introduce the intuition for our approach
in Section 4, with a discussion of manifolds and Bayesian
uncertainty. This leads us to our results and conclusions in
Sections 5 and 6.

2. Background
While neural networks are known to be robust to random
noise (Fawzi et al., 2016), they have been shown to be
vulnerable to adversarially-crafted perturbations (Szegedy
et al., 2014; Goodfellow et al., 2015; Papernot et al.,
2016b). Specifically, an adversary can use information
about the model to craft small perturbations that fool the
network into misclassifying their inputs. In the context of
object classification, these perturbations are often imper-
ceptible to the human eye, yet they can force the model to
misclassify with high model confidence.

A number of works have attempted to explain the vul-
nerability of DNNs to adversarial samples. Szegedy
et al. (2014) offered a simple preliminary explanation for
the phenomenon, arguing that low-probability adversarial
“pockets” are densely distributed in input space. As a re-
sult, they argued, every point in image space is close to
a vast number of adversarial points and can be easily ma-
nipulated to achieve a desired model outcome. Goodfel-
low et al. (2015) argued that it is a result of the linear na-
ture of deep classifiers. Although this explanation has been
the most well-accepted in the field, it was recently weak-
ened by counterexamples (Tanay & Griffin, 2016). Tanay
& Griffin (2016) introduced the ‘boundary tilting’ perspec-
tive, suggesting instead that adversarial samples lie in re-
gions where the classification boundary is close to the man-
ifold of training data.

Research in adversarial attack defense generally falls
within two categories: first, methods for improving the ro-
bustness of classifiers to current attacks, and second, meth-
ods for detecting adversarial samples in the wild. Good-
fellow et al. (2015) proposed augmenting the training loss
function with an additional adversarial term to improve
the robustness of these models to a specific adversarial at-
tack. Defensive distillation (Papernot et al., 2016c) is an-
other recently-introduced technique which involves train-
ing a DNN with the softmax outputs of another neural net-
work that was trained on the training data, and can be seen
as a way of preventing the network from fitting too tightly
to the data. Defensive distillation is effective against the at-
tack of Papernot et al. (2016b). However, Carlini & Wagner
(2016) showed that defensive distillation is easily broken
with a modified attack.

On the detection of adversarial samples, Metzen et al.

(2017) proposed augmenting a DNN with an additional
“detector” subnetwork, trained on normal and adversarial
samples. Although the authors show compelling perfor-
mance results on a number of state-of-the-art adversarial
attacks, one major drawback is that the detector subnetwork
must be trained on generated adversarial samples. This im-
plicitly trains the detector on a subset of all possible ad-
versarial attacks; we do not know how comprehensive this
subset is, and future attack modifications may be able to
surmount the system. The robustness of this technique to
random noise is not currently known.

3. Adversarial Attacks
The typical goal of an adversary is to craft a sample that
looks similar to a normal sample, and yet that gets misclas-
sified by the target model. In the realm of image classi-
fication, this amounts to finding a small perturbation that,
when added to a normal image, causes the target model to
misclassify the sample, but remains correctly classified by
the human eye. For a given input image x, the goal is to
find a minimal perturbation η such that the adversarial in-
put x̃ = x+ η is misclassified. A significant number of ad-
versarial attacks satisfying this goal have been introduced
in recent years. This allows us a wide range of attacks to
choose from in our investigation. Here, we introduce some
of the most well-known and most recent attacks.

Fast Gradient Sign Method (FGSM): Goodfellow et al.
(2015) introduced the Fast Gradient Sign Method for craft-
ing adversarial perturbations using the derivative of the
model’s loss function with respect to the input feature vec-
tor. Given a base input, the approach is to perturb each fea-
ture in the direction of the gradient by magnitude ε, where
ε is a parameter that determines perturbation size. For a
model with loss J(Θ, x, y), where Θ represents the model
parameters, x is the model input, and y is the label of x, the
adversarial sample is generated as

x∗ = x+ ε sign(∇xJ(Θ, x, y)).

With small ε, it is possible to fool DNNs trained for the
MNIST and CIFAR-10 classification tasks with high suc-
cess rate (Goodfellow et al., 2015).

Basic Iterative Method (BIM): Kurakin et al. (2017) pro-
posed an iterative version of FGSM called the Basic Itera-
tive Method. This is a straightforward extension; instead of
merely applying adversarial noise η once with one param-
eter ε, apply it many times iteratively with small ε. This
gives a recursive formula:

x∗0 = x,

x∗i = clipx,ε(x
∗
i−1 + ε sign(∇x∗

i−1
J(Θ, x∗i−1, y))).
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Here, clipx,ε(·) represents a clipping of the values of
the adversarial sample such that they are within an ε-
neighborhood of the original sample x. This approach is
convenient because it allows extra control over the attack.
For instance, one can control how far past the classifica-
tion boundary a sample is pushed: one can terminate the
loop on the iteration when x∗i is first misclassified, or add
additional noise beyond that point.

The basic iterative method was shown to be typically more
effective than the FGSM attack on ImageNet images (Ku-
rakin et al., 2017).

Jacobian-based Saliency Map Attack (JSMA): Papernot
et al. (2016b) proposed a simple iterative method for tar-
geted misclassification. By exploiting the forward deriva-
tive of a DNN, one can find an adversarial perturbation that
will force the model to misclassify into a specific target
class. For an input x and a neural network F , the output
for class j is denoted Fj(x). To achieve a target class t,
Ft(X) must be increased while the probabilities Fj(X) of
all other classes j 6= t decrease, until t = arg maxj Fj(X).
This is accomplished by exploiting the adversarial saliency
map, which is defined as

S(X, t)[i] =

{
0, if ∂Ft(X)

∂Xi
< 0 or

∑
j 6=t

∂Fj(X)
∂Xi

> 0

(∂Ft(X)
∂Xi

)|
∑
j 6=t

∂Fj(X)
∂Xi

|, otherwise

for an input feature i. Starting with a normal sample
x, we locate the pair of features {i, j} that maximize
S(X, t)[i] + S(X, t)[j], and perturb each feature by a con-
stant offset ε. This process is repeated iteratively until the
target misclassification is achieved. This method can effec-
tively produce MNIST samples that are correctly classified
by human subjects but misclassified into a specific target
class by a DNN with high success rate.

Carlini & Wagner (C&W): Carlini & Wagner (2016) re-
cently introduced a technique that is able to overcome de-
fensive distillation. In fact, their technique encompasses
a range of attacks, all cast through the same optimization
framework. This results in three powerful attacks, each for
a different distance metric: an L2 attack, an L0 attack, and
an L∞ attack. For the L0 attack, which we will consider
in this paper, the perturbation δ is defined in terms of an
auxiliary variable ω as

δ∗i =
1

2
(tanh(ωi + 1))− xi.

Then, to find δ∗ (an ‘unrestricted perturbation’), we opti-
mize over ω:

minω

∥∥∥∥1

2
(tanh(ω) + 1)− x

∥∥∥∥2
2

+ cf

(
1

2
tanh(ω) + 1

)

where f(·) is an objective function based on the hinge loss:

f(x) = max(max{Z(x)i : i 6= t} − Z(x)t,−κ).

Here, Z(x)i is the pre-softmax output for class i, t is the
target class, and κ is a parameter that controls the confi-
dence with which the misclassification occurs.

Finally, to produce the adversarial sample x∗ = x + δ,
we convert the unrestricted perturbation δ∗ to a restricted
perturbation δ, in order to reduce the number of changed
pixels. By calculating the gradient ∇f(x + δ∗), we may
identify those pixels δ∗i with little importance (small gradi-
ent values) and take δi = 0; otherwise, for larger gradient
values we take δi = δ∗i . This allows an effective attack with
few modified pixels, thus helping keep the norm of δ low.

These three attacks were shown to be particularly effec-
tive in comparison to other attacks against networks trained
with defensive distillation, achieving adversarial sample
generation success rates of 100% where other techniques
were not able to top 1%.

4. Artifacts of Adversarial Samples
Each of these adversarial sample generation algorithms are
able to change the predicted label of a point without chang-
ing the underlying true label: humans will still correctly
classify an adversarial sample, but models will not. This
can be understood from the perspective of the manifold of
training data. Many high-dimensional datasets, such as im-
ages, are believed to lie on a low-dimensional manifold
(Lee & Verleysen, 2007). Gardner et al. (2015) recently
showed that by carefully traversing the data manifold, one
can change the underlying true label of an image. The intu-
ition is that adversarial perturbations—which do not consti-
tute meaningful changes to the input—must push samples
off of the data manifold. Tanay & Griffin (2016) base their
investigation of adversarial samples on the assumption that
adversarial samples lie near class boundaries that are close
to the edge of a data submanifold. Similarly, Goodfellow
et al. (2015) demonstrate that DNNs perform correctly only
near the small manifold of training data. Therefore, we
base our work here on the assumption that adversarial sam-
ples do not lie on the data manifold.

If we accept that adversarial samples are points that would
not arise naturally, then we can assume that a technique to
generate adversarial samples will, from a source point x
with class cx, typically generate an adversarial sample x∗

that does not lie on the manifold and is classified incor-
rectly as cx∗ . If x∗ lies off of the data manifold, we may
split into three possible situations:

1. x∗ is far away from the submanifold of cx∗ .
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(a) Two simple 2D submanifolds.

-
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x

x∗

(b) One submanifold has a ‘pocket’.

-
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(c) Nearby 2D submanifolds.

Figure 2. (a): The adversarial sample x∗ is generated by moving off the ‘-’ submanifold and across the decision boundary (black dashed
line), but x∗ still lies far from the ‘+’ submanifold. (b): the ‘+’ submanifold has a ‘pocket’, as in Szegedy et al. (2014). x∗ lies in
the pocket, presenting significant difficulty for detection. (c): the adversarial sample x∗ is near both the decision boundary and both
submanifolds.

2. x∗ is near the submanifold cx∗ but not on it, and x∗ is
far from the classification boundary separating classes
cx and cx∗ .

3. x∗ is near the submanifold cx∗ but not on it, and x∗ is
near the classification boundary separating classes cx
and cx∗ .

Figures 2a through 2c show simplified example illustra-
tions for each of these three situations in a two-dimensional
binary classification setting.

4.1. Density Estimation

If we have an estimate of what the submanifold correspond-
ing to data with class cx∗ is, then we can determine whether
x∗ falls near this submanifold after observing the predic-
tion cx∗ . Following the intuition of Gardner et al. (2015)
and hypotheses of Bengio et al. (2013), the deeper layers
of a DNN provide more linear and ‘unwrapped’ manifolds
to work with than input space; therefore, we may use this
idea to model the submanifolds of each class by perform-
ing kernel density estimation in the feature space of the last
hidden layer.

The standard technique of kernel density estimation can,
given the point x and the set Xt of training points with
label t, provide a density estimate f̂(x) that can be used
as a measure of how far x is from the submanifold for t.
Specifically,

f̂(x) =
1

|Xt|
∑
xi∈Xt

k(xi, x) (1)

where k(·, ·) is the kernel function, often chosen as a Gaus-
sian with bandwidth σ:

kσ(x, y) ∼ exp(−‖x− y‖2/σ2). (2)

The bandwidth may typically be chosen as a value that

maximizes the log-likelihood of the training data (Jones
et al., 1996). A value too small will give rise to a ‘spiky’
density estimate with too many gaps (see Figure 3), but a
value too large will give rise to an overly-smooth density
estimate (see Figure 4). This also implies that the estimate
is improved as the training set size |Xt| increases, since
we are able to use smaller bandwidths without the estimate
becoming too ‘spiky.’

For the manifold estimate, we operate in the space of the
last hidden layer. This layer provides a space of reasonable
dimensionality in which we expect the manifold of our data
to be simplified. If φ(x) is the last hidden layer activation
vector for point x, then our density estimate for a point x
with predicted class t is defined as

K̂(x,Xt) =
∑
xi∈Xt

kσ(φ(x), φ(xi)) (3)

whereXt is the set of training points of class t, and σ is the
tuned bandwidth.

To validate our intuition about the utility of this density es-
timate, we perform a toy experiment using the BIM attack
with a convnet trained on MNIST data. In Figure 5, we

Figure 3. ‘spiky’ density estimate from a too-small bandwidth on
1-D points sampled from a bimodal distribution.

Figure 4. Overly smooth density estimate from a too-large band-
width on 1-D points sampled from a bimodal distribution.
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iteration

K̂

iteration

K̂

iteration

K̂

iteration

K̂

Figure 5. Density estimate as a function of number of iterations of
the BIM attack for a few MNIST sample points. The estimate de-
creases for the source class (blue) and increases for the incorrect
class (red); usually the crossover point is near when the predicted
class changes (black line).

plot the density estimate of the source class and the final
predicted class for each iteration of BIM. One can see that
the adversarial sample moves away from a high density es-
timate region for the correct class, and towards a high den-
sity estimate region for the incorrect class. This matches
our intuition: we expect the adversarial sample to leave the
correct class manifold and move towards (but not onto) the
incorrect class manifold.

While a density estimation approach can easily detect an
adversarial point that is far from the cx∗ submanifold, this
strategy may not work well when x∗ is very near the cx∗

submanifold. Therefore, we must investigate alternative
approaches for those cases.

4.2. Bayesian Neural Network Uncertainty

Beyond distance-based metrics, another powerful tool to
identify low-confidence regions of the input space is the
uncertainty output of Bayesian models, e.g., the Gaussian
process (Rasmussen & Williams, 2005). Gaussian pro-
cesses assume a Gaussian prior over the set of all func-
tions, F , that can be used to map the input space to the
output space. As observations (x, y) are made, only those
functions f ∈ F are retained for which f(x) = y. For
a new test point x∗, the prediction for each function f ,
y∗ = f(x∗), is computed and the expected value over y∗ is
the used as the final prediction. Simultaneously, the vari-
ance of the output values y∗ is also used as an indicator of
the model’s uncertainty. Figure 6 illustrates how in simple
cases, Bayesian uncertainty can provide additional infor-
mation about model confidence not conveyed by distance
metrics like a density estimate.

Recently, Gal & Ghahramani (2015) proved that DNNs
trained with dropout are equivalent to an approximation
of the deep Gaussian process. As result, we can extract
Bayesian uncertainty estimates from a wide range of DNN

Figure 6. A simple 1-dimensional Gaussian process regression.
The dashed line indicates the mean prediction and the shaded area
indicates the 95% confidence interval. While two test points (red
x’s) are equidistant from their nearest training points (black dots),
their uncertainty estimates differ significantly.

architectures without modification. Dropout, first intro-
duced as a method to reduce overfitting when training
DNNs (Srivastava et al., 2014), works by dropping hidden
nodes from the network randomly with some probability
p during the training phase. During the testing phase, all
nodes are kept, but the weights are scaled by p. Gal &
Ghahramani (2015) showed that the dropout training ob-
jective converges to a minimization of the Kullback-Leibler
divergence between an aproximate distribution and the pos-
terior of a deep Gaussian process marginalized over its co-
variance function parameters. After iterating to conver-
gence, uncertainty estimates can be extracted from dropout
DNNs in the following manner.

We sample T times from our distribution of network con-
figurations, typically i.i.d. Bernoulli(ol) for each layer
l, and obtain parameters {W 1, · · · ,WT }. Here W t =
{W t

1 , ...,W
t
L} are the L weight matrices sampled at itera-

tion t. Thereafter, we can evaluate a Monte Carlo estimate
of the output, i.e. the first moment, as:

Eq(y∗|x∗)[y
∗] ≈ 1

T

T∑
i=1

ŷ∗(x∗,W t). (4)

Similarly, we can evaluate the second moment with Monte
Carlo estimation, leading us to an estimate of model vari-
ance

Vq(y∗|x∗)[y
∗] ≈ τ−1ID

+
1

T

T∑
i=1

ŷ∗(x∗,W t)T ŷ∗(x∗,W t)

−Eq(y∗|x∗)[y
∗]TEq(y∗|x∗)[y

∗] (5)

where τ is our model precision.

Relying on the intuition that Bayesian uncertainty can be
useful to identify adversarial samples, we make use of
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(a) BIM

(b) JSMA

Figure 7. Model uncertainty distributions per sample type for
MNIST. Distributions are based on a histogram with 100 bins.

dropout variance values in this paper, setting T = 50. As
dropout on its own is known to be a powerful regularization
technique (Srivastava et al., 2014), we use neural network
models without weight decay, leaving τ−1 = 0. Thus, for a
test sample x∗ and stochastic predictions {ŷ∗1 , ..., ŷ∗T }, our
uncertainty estimate U(x∗) can be computed as

U(x∗) =
1

T

T∑
i=1

ŷ∗i
T
ŷ∗i −

(
1

T

T∑
i=1

ŷ∗i

)T (
1

T

T∑
i=1

ŷ∗i

)
.

(6)

Because we use DNNs with one output node per class, we
look at the mean of the uncertainty vector as a scalar repre-
sentation of model uncertainty.

To demonstrate the efficacy of our uncertainty estimates in
detecting adversarial samples, we trained the LeNet con-
vnet (LeCun et al., 1989) with a dropout rate of 0.5 applied
after the last pooling layer and after the inner-product layer
for MNIST classification. Figures 7a and 7b compare the
distribution of Bayesian uncertainty for adversarial sam-
ples to those of normal samples and of noisy samples with
equivalent perturbation size; both the BIM and JSMA cases
are shown. Clearly, uncertainty distributions for adversar-
ial samples are statistically distinct from normal and noisy
samples, verifying our intuition.

5. Experiments
In order to evaluate the proficiency of our density and un-
certainty features for adversarial detection, we test these
features on MNIST, CIFAR10, and SVHN. All pixels are
scaled to floats in the range of [0, 1]. Our models achieve
near state-of-the-art accuracy on the normal holdout sets
for each dataset and are described in Section 5.1. In order
to properly evaluate our method, we only perturb those test
samples which were correctly classified by our models in
their original states. An adversary would have no reason to
perturb samples that are already misclassified.

We implement each of the four attacks (FGSM, BIM,
JSMA, and C&W) described in Section 3 in TensorFlow,
using the cleverhans library for FGSM and JSMA (Pa-
pernot et al., 2016a). For the BIM attack, we implement
two versions: BIM-A, which stops iterating as soon as mi-
classification is achieved (‘at the decision boundary’), and
BIM-B, which runs for a fixed number of iterations that
is well beyond the average misclassification point (‘beyond
the decision boundary’). For each attack type, we also craft
an equal number of noisy test samples as a benchmark.
For FGSM and BIM, these are crafted by adding Guas-
sian noise to each pixel with a scale set so that the mean
L2-norm of the perturbation matches that of the adversarial
samples. For JSMA and C&W, which flip pixels to their
min or max values, these are crafted by observing the num-
ber of pixels that were altered in the adversarial case and
flipping an equal number of pixels randomly. Details about
model accuracies on the adversarial sets and average per-
turbation sizes are provided in Table 1. Some examples
of normal, noisy and adversarial samples are displayed in
Figure 8.

Figure 8. Some example images from MNIST, CIFAR-10 and
SVHN. The original image is shown in the left-most column. For
each attack, the left image is the adversarial sample and the right
image is a corresponding noisy sample of equal perturbation size.
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Dataset FGSM BIM-A BIM-B JSMA C&W
L2 Acc. L2 Acc. L2 Acc. L2 Acc. L2 Acc.

MNIST 6.22 5.87% 2.62 0.00% 5.37 0.00% 5.00 2.70% 4.71 0.79%
CIFAR-10 2.74 7.03% 0.48 0.57% 2.14 0.57% 3.45 0.20% 2.70 0.89%

SVHN 7.08 3.29% 0.83 0.00% 6.56 0.00% 2.96 0.32% 2.37 0.87%

Table 1. Adversarial attack details. For each algorithm, the average L2-norm of the perturbation is shown, as well as the model accuracy
on the adversarial set.

Sample MNIST CIFAR-10
Type u(x∗)

u(x) > 1 d(x∗)
d(x) < 1 u(x∗)

u(xn) > 1 d(x∗)
d(xn) < 1 u(x∗)

u(x) > 1 d(x∗)
d(x) < 1 u(x∗)

u(xn) > 1 d(x∗)
d(xn) < 1

FGSM 92.2% 95.6% 79.5% 90.0% 74.7% 70.1% 68.2% 69.6%
BIM-A 99.2% 98.0% 99.5% 98.7% 83.4% 76.4% 83.3% 76.8%
BIM-B 60.7% 90.5% 35.6% 86.7% 4.0% 98.8% 3.6% 99.1%
JSMA 98.7% 98.5% 97.5% 96.5% 93.5% 91.5% 87.4% 89.6%
C&W 98.5% 98.4% 96.6% 97.5% 92.9% 92.4% 88.23% 90.4%

Table 2. The uncertainty of an adversarial sample is typically larger than that of its noisy and normal counterparts, and the density
estimate is typically smaller. x∗ indicates an adversarial sample, x is a regular sample and xn a noisy sample.

5.1. Network setup

Here, we briefly describe the models used for each dataset
and their accuracies on normal and noisy test samples.

• MNIST: We use the LeNet (LeCun et al., 1989) con-
vnet architecture with a dropout rate of 0.5 after last
pooling layer and after the inner-product layer. This
model reports 98.7% accuracy on normal samples and
97.2% accuracy on noisy samples.

• SVHN: We use the LeNet architecture with an extra
intermediate inner-product layer to assist with higher
dimensionality. We used a dropout rate of 0.5 after the
last pooling layer and after each inner-product layer.
This model reports 92.2% accuracy on normal sam-
ples and 79.2% accuracy on noisy samples.

• CIFAR-10: We use a deep 12-layer convnet with a
dropout rate of 0.5 applied after the last pooling layer
and after each of the 2 inner-product layers. This
model reports 82.6% accuracy on normal samples and
79.2% accuracy on noisy samples.

Training was done using the Adadelta optimizer with cross-
entropy loss and a batch size of 256.

5.2. Feature Values

When we generate adversarial samples, the uncertainty typ-
ically grows larger than the original sample, and the density
estimate typically grows smaller. This makes sense: the
adversarial sample is likely to be in a region of higher un-
certainty, lower density estimates, or both. In addition, the
change is far more pronounced than if we simply perturb
the sample with random noise.

In order to demonstrate this phenomenon, we generate ad-
versarial samples and randomly perturbed (noisy) samples
from the test data points for MNIST and CIFAR-10. For
each attack, we calculate the percentage of points with
higher uncertainty values than the corresponding original
unperturbed samples, and the percentage of points with
lower density estimates than the corresponding original un-
perturbed samples. The results are shown in Table 2.

We can see clearly that uncertainty is generally increased
when adversarial samples are generated, and density esti-
mates are generally decreased. These results suggest that
our two features are reliable indicators of adversarial sam-
ples. Therefore, we next move on to the task of detecting
adversarial samples.

5.3. Adversarial Sample Classifiers

To evaluate our adversarial detection method, we aggregate
all adversarial samples of different types into a unified set,
and do the same with the noisy and normal samples. For
each dataset and attack, we have built three binary classi-
fiers:

• uncertainty: this classifier simply thresholds on
the uncertainty value of a sample.

• density: this classifier simply thresholds on the
negative log kernel density of a sample.

• combined: this is a simple logistic regression clas-
sifier with two features as input: the uncertainty and
the density estimate.

These detection models are used to distinguish adversar-
ial samples–the positive class–from normal and noisy sam-
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Dataset FGSM BIM-A BIM-B JSMA C&W Overall
MNIST 90.57% 97.23% 82.06% 98.13% 97.94% 92.59%

CIFAR-10 72.23% 81.05% 95.41% 91.52% 92.17% 85.54%
SVHN 89.04% 82.12% 99.91% 91.34% 92.82% 90.20%

Table 3. ROC-AUC measures for each dataset and each attack for the logistic regression classifier (combined).

(a) MNIST dataset. (b) SVHN dataset. (c) CIFAR-10 dataset.

Figure 9. ROCS for the different classifier types. The blue line indicates uncertainty, green line density, and red line combined.
The negative class consists of both normal and noisy samples.

ples, which jointly constitue the negative class. The logistic
regression model is trained by generating adversarial sam-
ples for every correctly-classified training point using each
of the four adversarial attacks, and then using the uncer-
tainty values and density estimates for the original and ad-
versarial samples as a labeled training set. The two features
are z-scored before training.

Because these are all threshold-based classifiers, we may
generate an ROC for each method. Figure 9 shows ROCs
for each classifier with a couple of datasets. We see that the
performance of the combined classifier is better than ei-
ther the uncertainty or density classifiers, demon-
strating that each feature is able to detect different qualities
of adversarial features. Further, the ROCs demonstrate that
the uncertainty and density estimates are effective indica-
tors that can be used to detect if a sample is adversarial.

Figure 10. ROC results per adversarial attack for combined clas-
sifier on MNIST.

Figure 10 shows the ROCs for each individual attack; the
combined classifier is able to most easily handle the JSMA,
BIM-A and C&W attacks.

In Table 3, the ROC-AUC measures are shown, for each of
the three classifiers, on each dataset, for each attack. The
performance is quite good, suggesting that the combined
classifier is able to effectively detect adversarial samples
from a wide range of attacks on a wide range of datasets.

6. Conclusions
We have shown that adversarial samples crafted to fool
DNNs can be effectively detected with two new features:
kernel density estimates in the subspace of the last hidden
layer, and Bayesian neural network uncertainty estimates.
These two features handle complementary situations, and
can be combined as an effective defense mechanism against
adversarial samples. Our results report that we can, in some
cases, obtain an ROC-AUC for an adversarial sample de-
tector of up to 90% or more when both normal and noisy
samples constitute the negative class. The performance is
good on a wide variety of attacks and a range of image
datasets.

In our work here, we have only considered convolutional
neural networks. However, we believe that this approach
can be extended to other neural network architectures as
well. Gal (2015) showed that the idea of dropout as a
Bayesian approximation could be applied to RNNs as well,
allowing for robust uncertainty estimation. In future work,
we aim to apply our features to RNNs and other network
architectures.
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