
A Dual-Tree Algorithm for Fast k-means Clustering With Large k

Ryan R. Curtin
ryan@ratml.org

Abstract

k-means is a widely used clustering algorithm, but for k

clusters and a dataset size of N , each iteration of Lloyd’s

algorithm costs O(kN) time. This is problematic because

increasingly, applications of k-means involve both large N

and large k, and there are no accelerated variants that

handle this situation. To this end, we propose a dual-tree

algorithm that gives the exact same results as standard k-

means; when using cover trees, we bound the single-iteration

runtime of the algorithm as O(N + k log k), under some

assumptions. To our knowledge these are the first sub-

O(kN) bounds for exact Lloyd iterations. The algorithm

performs competitively in practice, especially for large N

and k, in low-dimensional settings. The algorithm is generic,

so any type of tree (i.e. kd-tree, octree, etc.) may be used.

1 Introduction

Of all the clustering algorithms in use today, among the
simplest and most popular is the venerated k-means
clustering algorithm, usually implemented via Lloyd’s
algorithm: given a dataset S, repeat the following two
steps (a ‘Lloyd iteration’) until the centroids of each of
the k clusters converge:

1. Assign points to the cluster with nearest centroid.

2. Recalculate the centroids for each cluster using the
assignments of each point.

Clearly, a simple implementation of this algorithm
will take O(kN) time where N = |S|. But the num-
ber of iterations is not bounded unless the practitioner
manually sets a maximum, and k-means is not guar-
anteed to converge to the global best clustering. De-
spite these shortcomings, in practice k-means tends to
quickly converge to reasonable solutions. Even so, there
is no shortage of techniques for improving the clusters
k-means converges to: refinement of initial centroids [7]
and weighted sampling of initial centroids [2] are just
two of many popular existing strategies.

There are also a number of methods that use the
triangle inequality to accelerate the runtime of a single
iteration of k-means, generally focused only on the large
N case. Algorithms of this sort include the work of

Pelleg and Moore [31], Elkan [19], Hamerly [23], and
Ding et al. [17].

In this paper, we describe a dual-tree k-means algo-
rithm for the large k and large N case that outperforms
current competing algorithms in that setting. This algo-
rithm also has bounded single-iteration runtime under
some assumptions (see Section 6). The algorithm, which
is our main contribution, has several appealing aspects:

• Empirical efficiency. In the large k and large N
setting for which this algorithm is designed, it out-
performs all other alternatives, and scales better to
larger datasets. The algorithm is especially efficient
for datasets of low (intrinsic) dimensionality.

• Runtime guarantees. Using adaptive runtime
analysis techniques, we bound the single-iteration
runtime of our algorithm with respect to the intrin-
sic dimensionality of the centroids and data, when
cover trees are used. This gives theoretical sup-
port for the use of our algorithm. In addition, the
bound is dependent on the intrinsic dimensionality,
not the extrinsic dimensionality.

• Generalizability. We develop our algorithm us-
ing a tree-independent dual-tree algorithm abstrac-
tion [14]; this means that our algorithm may be
used with any type of valid tree. This includes not
just kd-trees but also metric trees, cone trees, cover
trees, octrees, and others.

• Separation of concerns. The abstraction we
use to develop our algorithm allows us to focus on
and formalize each of the pruning rules individually
(Section 4). This aids understanding of the algo-
rithm and eases insertion of future improvements
and better pruning rules.

Section 2 shows the relevance of the large k case;
then, in Section 3, we show that we can build a
tree on the k clusters, and then a dual-tree algorithm
[14] can be used to efficiently perform an exact single
iteration of k-means clustering. Section 4 details the
four pruning strategies used in our algorithm, and
Section 5 introduces the algorithm itself. Sections 6

Algorithm Setup Worst-case Memory
naive n/a O(kN) O(k +N)

blacklist O(N logN) O(kN) O(k logN +N)
elkan n/a O(k2 + kN) O(k2 + kN)

hamerly n/a O(k2 + kN) O(k +N)
yinyang O(k2 + kN) O(kN) O(kN)

dualtree O(N logN) O(k log k +N)1 O(k +N)

Table 1: Runtime and memory bounds for k-means algorithms.

and 7 show the theoretical and empirical results for the
algorithm, and finally Section 8 concludes the paper and
paints directions for future improvements.

2 Scaling k-means

Although the original publications on k-means only
applied the algorithm to a maximum dataset size of 760
points, the half-century of relentless progress since then
has seen dataset sizes scale into billions. Due to its
simplicity, though, k-means has remained relevant, and
is still applied in many large-scale applications.

In cases where N is large but k remains small, a
good choice is a sampling algorithm, which will return
an approximate clustering. One sampling technique,
coresets, can produce good clusterings for N in the
millions using a few thousand points [20]. However, for
large k, the number of samples required to produce good
clusterings can become prohibitive.

For large k, then, we turn to an alternative ap-
proach: accelerating exact Lloyd iterations. Exist-
ing techniques include the brute-force implementation,
the blacklist algorithm [31], Elkan’s algorithm [19], and
Hamerly’s algorithm [23], as well as the recent Yinyang
k-means algorithm [17]. The blacklist algorithm builds
a kd-tree on the dataset and, while the tree is traversed,
blacklists individual clusters that cannot be the clos-
est cluster (the owner) of any descendant points of a
node. Elkan’s algorithm maintains an upper bound and
a lower bound on the distance between each point and
centroid; Hamerly’s algorithm is a memory-efficient sim-

smaller k larger k

smaller N
brute-force

elkan

larger N

sampling
hamerly

pelleg-moore
yinyang

dualtree

Table 2: Good candidate algorithm choices for different
settings. Elkan’s algorithm is not suited to large N
because of its memory requirements.

plification of this technique. The Yinyang algorithm or-
ganizes the centroids into groups of about 10 (depending
on parameters) using 5 iterations of k-means on the cen-
troids followed by a single iteration of standard k-means
on the points. Once groups are built, the Yinyang algo-
rithm attempts to prune groups of centroids using rules
similar to Elkan and Hamerly’s algorithms.

Of these algorithms, only Yinyang k-means consid-
ers centroids in groups at all, but it does not consider
points in groups. On the other hand, the blacklist al-
gorithm is the only one that builds a tree on the points
and is able to assign multiple points to a single cluster
at once. So, though each algorithm has its own use-
ful region, none of the four we have considered here are
well-suited to the case of large N and large k (see Table
2 for a rough sketch).

Table 1 shows setup costs, worst-case per-iteration
runtimes, and memory usage of each of these algorithms
as well as the proposed dual-tree algorithm1. The
expected runtime of the blacklist algorithm is, under
some assumptions, O(k+k logN+N) per iteration. The
expected runtime of Hamerly’s and Elkan’s algorithm
is O(k2 + αN) time, where α is the expected number
of clusters visited by each point (in both Elkan and
Hamerly’s results, α seems to be small).

However, none of these algorithms are specifically
tailored to the large k case, and the large k case
is common. Pelleg and Moore [31] report several
hundred clusters in a subset of 800k objects from
the SDSS dataset. Clusterings for n-body simulations
on astronomical data often involve several thousand
clusters [25]. Csurka et al. [10] extract vocabularies
from image sets using k-means with k ∼ 1000. Coates
et al. [9] show that k-means can work surprisingly well
for unsupervised feature learning for images, using k as
large as 4000 on 50000 images. Also, in text mining,
datasets may have up to 18000 unique labels [4]. Can
and Ozkarahan [8] suggest that the number of clusters in
text data is directly related to the size of the vocabulary,
suggesting k ∼ mN/t where m is the vocabulary size,
n is the number of documents, and t is the number

1The dual-tree algorithm worst-case runtime bound also de-

pends on some assumptions on dataset-dependent constants. This
is detailed further in Section 6.

of nonzero entries in the term matrix. Thus, it is
important to have an algorithm with favorable scaling
properties for both large k and N .

3 Tree-based algorithms

The blacklist algorithm is an example of a single-tree
algorithm: one tree (the reference tree) is built on the
dataset, and then that tree is traversed. This approach
is applicable to a surprising variety of other problems,
too [5, 30, 16]. It is only natural to build a tree on
the data points: tree building is a one-time O(N logN)
cost and for large N , this cost is generally negligible
compared to the cost of clustering.

The speedup of the blacklist algorithm comes from
the hierarchical nature of trees: during the algorithm,
we may rule out a cluster centroid for many points at
once. The same reason is responsible for the impressive
speedups obtained for other single-tree algorithms, such
as nearest neighbor search [5, 28]. But for nearest
neighbor search, the nearest neighbor is often required
not just for a query point but instead a query set.
This motivated the development of dual-tree algorithms,
which also build a tree on the query set (the query tree)
in order to share work across query points.

This general approach is applicable to k-means with
large k: we may build a query tree on the data points, as
well as a reference tree on the k cluster centroids. We
may then use a dual-tree algorithm to rule out many
centroids for many points at once.

A recent result generalizes the class of dual-tree al-
gorithms, simplifying their expression and development
[14]. Any dual-tree algorithm can be decomposed into
three parts: a type of space tree, a pruning dual-tree
traversal, and a point-to-point BaseCase() function and
node-to-node Score() function that determines when
pruning is possible2. So, given any type of tree (such
as a kd-tree) and a pruning dual-tree traversal (such as
a dual depth-first traversal [11]), the algorithm will call
the Score() function with a query tree node Nq and
a reference tree node Nr. The Score() function will
determine if the node combination may be pruned, in
which case there will be no further recursion down those
subtrees. If the node combination is not pruned, then
the BaseCase() function will be called with each com-
bination of query points held in Nq and reference points
held in Nr. Because there are already numerous types
of trees and traversals [14, 11], to create a dual-tree k-
means algorithm that can perform the assignments step
we only need to develop two functions:

• Score(Nq, Nr), which determines if any descen-
dant centroids in Nr could own any descendant

2Precise definitions can be found in the original paper [14].

points of Nq, and prunes the combination if not;

• BaseCase(pq, cr), which calculates if cr is the
closest centroid to pq.

The two types of trees we will explicitly consider in
this paper are the kd-tree and the cover tree [6], but it
should be remembered that the algorithm as provided is
sufficiently general to work with any other type of tree.
Therefore, we standardize notation for trees; see Table
3 and [14]. It is important to note that the set Pi is
not equivalent to Dp

i . Lastly, we say that a centroid c
owns a point p if c is the closest centroid to p.

Ti a tree
Ni a node
Ci the set of child nodes of Ni

Pi the set of points held in Ni

Dp
i the set of descendant points of Ni

Table 3: Notation for trees, from [14].

4 Pruning strategies

All of the existing accelerated k-means algorithms oper-
ate by avoiding unnecessary work via the use of pruning
strategies. Thus, we will pursue four pruning strategies,
each based on or related to earlier work [31, 19, 23].

These pruning strategies are meant to be used
during the dual-tree traversal, for which we have built
a query tree Tq on the points and a reference tree Tr

on the centroids. Therefore, these pruning strategies
consider not just combinations of single points and
centroid pq and ci, but the combination of sets of points
and sets of centroids, represented by a query tree node
Nq and a centroid tree node Nr. This allows us to prune
many centroids for many points simultaneously.

Strategy one. When visiting a particular combi-
nation (Nq,Nr) (with Nq holding points and Nr hold-
ing centroids), the combination should be pruned if ev-
ery descendant centroid in Nr can be shown to own none
of the points in Nq. If we have cached an upper bound
ub(Nq) on the distance between any descendant point
of Nq and its nearest cluster centroid that satisfies

(4.1) ub(Nq) ≥ max
pq∈Dp

q

d(pq, cq)

where cq is the cluster centroid nearest to point pq, then
the node Nr can contain no centroids that own any
descendant points of Nq if

(4.2) dmin(Nq,Nr) > ub(Nq).

This relation bears similarity to the pruning rules
for nearest neighbor search [14] and max-kernel search
[15]. Figure 1a shows a situation where Nr can be
pruned; in this case, ball-shaped tree nodes are used,
and the upper bound ub(Nq) is set to dmax(Nq,Nr2).

Nq
Nr2 Nr

ub(Nq)

(a) Nr can be pruned.

pq

cj
mj

ub(pq)+mj

ck
maxk mk

(b) pq’s owner cannot change.

pq

cj
mj

ub(pq)+mj

ck
maxk mk

(c) pq’s owner can change.

Figure 1: Different pruning situations.

Strategy two. The recursion down a particular
branch of the query tree should terminate early if we can
determine that only one cluster can possibly own all of
the descendant points of that branch. This is related to
the first strategy. If we have been caching the number
of pruned centroids (call this pruned(Nq)), as well as
the identity of any arbitrary non-pruned centroid (call
this closest(Nq)), then if pruned(Nq) = k − 1, we may
conclude that the centroid closest(Nq) is the owner of
all descendant points of Nq, and there is no need for
further recursion in Nq.

Strategy three. The traversal should not visit
nodes whose owner could not have possibly changed
between iterations; that is, the tree should be coalesced
to include only nodes whose owners may have changed.
There are two easy ways to use the triangle inequality to
show that the owner of a point cannot change between
iterations. Figures 1b and 1c show the first: we have
a point pq with owner cj and second-closest centroid
ck. Between iterations, each centroid will move when
it is recalculated; define the distance that centroid ci
has moved as mi. Then we bound the distances for
the next iteration: d(pq, cj) + mj is an upper bound
on the distance from pq to its owner next iteration, and
d(pq, ck)−maximi is a lower bound on the distance from
pq to its second closest centroid next iteration. We may
use these bounds to conclude that if

(4.3) d(pq, cj) +mj < d(pq, ck)−max
i
mi,

then the owner of pq next iteration must be cj . Gen-
eralizing from individual points pq to tree nodes Nq is
easy. This pruning strategy can only be used when all
descendant points of Nq are owned by a single centroid,
and in order to perform the prune, we need to establish
a lower bound on the distance between any descendant
point of the node Nq and the second closest centroid.
Call this bound lb(Nq). Remember that ub(Nq) pro-
vides an upper bound on the distance between any de-
scendant point of Nq and its nearest centroid. Then, if
all descendant points of Nq are owned by some cluster
cj in one iteration, and

(4.4) ub(Nq) +mj < lb(Nq)−max
i
mi,

then Nq is owned by cluster cj in the next iteration. Im-
plementationally, it is convenient to have lb(Nq) store
a lower bound on the distance between any descendant

point of Nq and the nearest pruned centroid. Then, if
Nr is entirely owned by one cluster, all other centroids
are pruned, and lb(Nq) holds the necessary lower bound
for pruning according to the rule above.

The second way to use the triangle inequality to
show that an owner cannot change depends on the
distances between centroids. Suppose that pq is owned
by cj at the current iteration; then, if

(4.5) d(pq, cj)−mj < 2

(
min

ci∈C,ci 6=cj
d(ci, cj)

)
then cj will own pq next iteration [19]. We may adapt
this rule to tree nodes Nq in the same way as the
previous rule; if Nq is owned by cluster cj during this
iteration and

(4.6) ub(Nq) +mj < 2

(
min

ci∈C,ci 6=cj
d(ci, cj)

)
then Nq is owned by cluster cj in the next iteration.
Note that the above rules do work with individual points
pq instead of nodes Nq if we have a valid upper bound
ub(pq) and a valid lower bound lb(pq). Any nodes or
points that satisfy the above conditions do not need to
be visited during the next iteration, and can be removed
from the tree for that next iteration.

Strategy four. The traversal should use bound-
ing information from previous iterations; for instance,
ub(Nq) should not be reset to ∞ at the beginning
of each iteration. Between iterations, we may update
ub(Nq), ub(pq), lb(Nq), and lb(pq) according to the fol-
lowing rules:

ub(Nq) ←

ub(Nq) +mj if Nq is

owned by a single cluster cj

ub(Nq) + maximi if Nq is

not owned by a single cluster,

ub(pq) ← ub(pq) +mj ,

lb(Nq) ← lb(Nq)−max
i
mi,

lb(pq) ← lb(pq)−max
i
mi.

Special handling is required when descendant points
of Nq are not owned by a single centroid (Equation 4.7).
It is also true that for a child node Nc of Nq, ub(Nq) is
a valid upper bound for Nc and lb(Nq) is a valid lower
bound for Nc: that is, the upper and lower bounds may
be taken from a parent, and they are still valid.

5 The dual-tree k-means algorithm

These four pruning strategies lead to a high-level k-
means algorithm, described in Algorithm 1. During
the course of this algorithm, to implement each of
our pruning strategies, we will need to maintain the
following quantities:

• ub(Nq): an upper bound on the distance between
any descendant point of a node Nq and the nearest
centroid to that point.

• lb(Nq): a lower bound on the distance between
any descendant point of a node Nq and the nearest
pruned centroid.

• pruned(Nq): the number of centroids pruned dur-
ing traversal for Nq.

• closest(Nq): if pruned(Nq) = k − 1, this holds the
owner of all descendant points of Nq.

• canchange(Nq): whether or not Nq can change
owners next iteration.

• ub(pq): an upper bound on the distance between
point pq and its nearest centroid.

• lb(pq): a lower bound on the distance between
point pq and its second nearest centroid.

• closest(pq): the closest centroid to pq (this is also
the owner of pq).

• canchange(pq): whether or not pq can change
owners next iteration.

At the start of the algorithm, each upper bound is
initialized to ∞, each lower bound is initialized to ∞,
pruned(·) is initialized to 0 for each node, and closest(·)
is initialized to an invalid centroid for each node and
point. canchange(·) is set to true for each node and
point. Thus line 6 does nothing on the first iteration.

First, consider the dual-tree algorithm called on
line 9. As detailed earlier, we can describe a dual-tree
algorithm as a combination of tree type, traversal, and
point-to-point BaseCase() and node-to-node Score()

functions. Thus, we need only present BaseCase()

(Algorithm 2) and Score() (Algorithm 3)3.
The BaseCase() function is simple: given a point

pq and a centroid cr, the distance d(pq, cr) is calculated;
ub(pq), lb(pq), and closest(pq) are updated if needed.

Score() is more complex. The first stanza (lines
4–6) takes the values of pruned(·) and lb(·) from the
parent node of Nq; this is necessary to prevent pruned(·)
from undercounting. Next, we prune if the owner of
Nq is already known (line 7). If the minimum distance

3In these algorithms, we assume that any point present in a
node Ni will also be present in at least one child Nc ∈ Ci. It is
possible to fully generalize to any tree type, but the exposition

is significantly more complex, and our assumption covers most
standard tree types anyway.

Algorithm 1 High-level outline of dual-tree k-means.

1: Input: dataset S ∈ RN×d, initial centroids C ∈
Rk×d.

2: Output: converged centroids C.

3: T ← a tree built on S
4: while centroids C not converged do
5: {Remove nodes in the tree if possible.}
6: T ← CoalesceNodes(T)
7: Tc ← a tree built on C

8: {Call dual-tree algorithm.}
9: Perform a dual-tree recursion with T , Tc,

BaseCase(), and Score().

10: {Restore the tree to its non-coalesced form.}
11: T ← DecoalesceNodes(T)

12: {Update centroids and bounding information.}
13: C ← UpdateCentroids(T)
14: T ← UpdateTree(T)
15: end while
16: return C

between any descendant point of Nq and any descendant
centroid of Nr is greater than ub(Nq), then we may
prune the combination (line 16). In that case we may
also improve the lower bound (line 14). Note the special
handling in line 15: our definition of tree allows points
to be held in more than one node; thus, we must avoid
double-counting clusters that we prune.4. If the node
combination cannot be pruned in this way, an attempt is
made to update the upper bound (lines 17–20). Instead
of using dmax(Nq,Nr), we may use a tighter upper
bound: select any descendant centroid c from Nr and
use dmax(Nq, c). This still provides a valid upper bound,
and in practice is generally smaller than dmax(Nq,Nr).
We simply set closest(Nq) to c (line 20); closest(Nq)
only holds the owner of Nq if all centroids except one
are pruned—in which case the owner must be c.

Thus, at the end of the dual-tree algorithm, we
know the owner of every node (if it exists) via closest(·)
and pruned(·), and we know the owner of every point via
closest(·). A simple algorithm to do this is given here
as Algorithm 4 (UpdateCentroids()); it is a depth-
first recursion through the tree that terminates a branch
when a node is owned by a single cluster.

Next is updating the bounds in the tree and deter-
mining if nodes and points can change owners next iter-
ation; this work is encapsulated in the UpdateTree() al-
gorithm, which is an implementation of strategies 3 and
4 (see the appendix for details). Once UpdateTree()

4For trees like the kd-tree and the metric tree, which do not
hold points in more than one node, no special handling is required:

we will never prune a cluster twice for a given query node Nq .

Algorithm 2 BaseCase() for dual-tree k-means.

1: Input: query point pq, reference centroid cr
2: Output: distance between pq and cr

3: if d(pq, cr) < ub(pq) then
4: lb(pq)← ub(pq)
5: ub(pq)← d(pq, cr)
6: closest(pq)← cr
7: else if d(pq, cr) < lb(pq) then
8: lb(pq)← d(pq, cr)
9: end if

10: return d(pq, cr)

Algorithm 3 Score() for dual-tree k-means.

1: Input: query node Nq, reference node Nr

2: Output: score for node combination (Nq,Nr), or
∞ if the combination can be pruned

3: {Update the number of pruned nodes, if needed.}
4: if Nq not yet visited and is not the root node then
5: pruned(Nq)← parent(Nq)
6: lb(Nq)← lb(parent(Nq))
7: end if
8: if pruned(Nq) = k − 1 then return ∞

9: s← dmin(Nq,Nr)
10: c← any descendant cluster centroid ofNr

11: if dmin(Nq,Nr) > ub(Nq) then
12: {This cluster node owns no descendant points.}
13: if dmin(Nq,Nr) < lb(Nq) then
14: {Improve the lower bound for pruned nodes.}
15: lb(Nq)← dmin(Nq,Nr)
16: end if
17: pruned(Nq) += |Dp

r \ {clusters not pruned}|
18: s←∞

19: else if dmax(Nq, c) < ub(Nq) then
20: {We may improve the upper bound.}
21: ub(Nq)← dmax(Nq,Nr), closest(Nq)← c
22: end if

23: {Check if all clusters (except one) are pruned.}
24: if pruned(Nq) = k − 1 then return ∞

25: return s

sets the correct value of canchange(·) for every point
and node, we coalesce the tree for the next iteration
with the CoalesceTree() function. Coalescing the tree
is straightforward: we simply remove any nodes from
the tree where canchange(·) is false. This leaves a
smaller tree with no nodes where canchange(·) is false.
Decoalescing the tree (DecoalesceTree()) is done by
restoring the tree to its original state. See the appendix
for more details.

Algorithm 4 UpdateCentroids().

1: Input: tree T built on dataset S
2: Output: new centroids C
3: C := {c0, . . . , ck−1} ← 0k×d; n = 0k

4: {s is a stack.}
5: s← {root(T)}
6: while |s| > 0 do
7: Ni ← s.pop()
8: if pruned(Ni) = k − 1 then
9: {The node is entirely owned by a cluster.}

10: j ← index of closest(Ni)
11: cj ← cj + |Dp

i | centroid(Ni); nj ← nj + |Dp
i |

12: else
13: {The node is not entirely owned by a cluster.}
14: if |Ci| > 0 then s.push(Ci)
15: else
16: for pi ∈Pi not yet considered
17: j ← index of closest(pi)
18: cj ← cj + pi; nj ← nj + 1
19: end if
20: end while

21: for ci ∈ C, if ni > 0 then ci ← ci/ni
22: return C

6 Theoretical results

Space constraints allow us to only provide proof sketches
for the first two theorems here. Detailed proofs are given
in the appendix.

Theorem 6.1. A single iteration of dual-tree k-means
as given in Algorithm 1 will produce exactly the same
results as the brute-force O(kN) implementation.

Proof. (Sketch.) First, we show that the dual-tree algo-
rithm (line 9) produces correct results for ub(·), lb(·),
pruned(·), and closest(·) for every point and node. Next,
we show that UpdateTree() maintains the correctness
of those quantities and only sets canchange(·) to false

when the node or point cannot change owner. It is eas-
ily shown that CoalesceTree() and DecoalesceTree()

do not affect the results of the dual-tree algorithm be-
cause the only nodes and points removed are those
where canchange(·) = false. Lastly, we show that
UpdateCentroids() produces centroids correctly.

Next, we consider the runtime of the algorithm.
Our results are with respect to the expansion constant
ck of the centroids [6], which is a measure of intrinsic
dimension. cqk is a related quantity: the largest
expansion constant of C plus any point in the dataset.
Our results also depend on the imbalance of the tree
it(T), which in practice generally scales linearly in N
[13]. As with the other theoretical results, more detail
on each of these quantities is available in the appendix.

Theorem 6.2. When cover trees are used, a single
iteration of dual-tree k-means as in Algorithm 1 can be
performed in O(c4kc

5
qk(N + it(T)) + c9kk log k) time.

Proof. (Sketch.) Cover trees have O(N) nodes [6], so all
of the steps of the algorithm other than the tree building
and dual-tree algorithm can be done in O(N) time.
Building a tree on the centroids takes O(c6kk log k) time,
where ck is the expansion constant of the centroids.
Using recent results [13], we may show that our pruning
rules are at least as tight as nearest neighbor search;
thus the dual-tree algorithm (line 11) may be performed
in O(c9kr(N + it(T))) time. Also, we must perform
nearest neighbor search on the centroids, which costs
O(c9k(k + it(T))) time. This gives a total per-iteration
runtime of O(c9kr(N + it(T)) + c6kk log k + c9kit(Tk)).

This result holds intuitively. By building a tree
on the centroids, we are able to prune many centroids
at once, and as a result the amortized cost of finding
the nearest centroid to a point is O(1). This meshes
with earlier theoretical results [6, 13, 33] and earlier
empirical results [22, 21] that suggest that an answer can
be obtained for a single query point in O(1) time. Note
that this worst-case bound depends on the expansion
constant of the centroids, ck, and the related quantity
cqk. If the intrinsic dimension of the centroids is low—
that is, if the centroids are distributed favorably—the
dual-tree algorithm will be more efficient.

However, this bound is generally quite loose in
practice. First, runtime bounds for cover trees are
known to be loose [13]. Second, this particular bound
does not consider the effect of coalescing the tree. In any
given iteration, especially toward the end of the k-means
clustering, most points will have canchange(·) = false

and thus the coalesced tree will be far smaller than the
full tree built on all N points.

Theorem 6.3. Algorithm 1 uses no more than O(N +
k) memory when cover trees are used.

Proof. This proof is straightforward. A cover tree on N
points takes O(N) space. So the trees and associated
bounds take O(N) and O(k) space. Also, the dataset
and centroids take O(N) and O(k) space.

7 Experiments

The next thing to consider is the empirical performance
of the algorithm. We use the publicly available kmeans

program in mlpack [12]; in our experiments, we run it
as follows:

$ kmeans -i dataset.csv -I centroids.csv -c

$k -v -e -a $algorithm

tree build time
Dataset N d kd-tree cover tree

cloud 2048 10 0.001s 0.005s
cup98b 95413 56 1.640s 32.41s
birch3 100000 2 0.037s 2.125s
phy 150000 78 4.138s 22.99s

power 2075259 7 7.342s 1388s
lcdm 6000000 3 4.345s 6214s

Table 4: Dataset information.

where $k is the number of clusters and $algorithm is
the algorithm to be used. Each algorithm is imple-
mented in C++. For the yinyang algorithm, we use the
authors’ implementation. We use a variety of k values
on mostly real-world datasets; details are shown in Ta-
ble 4 [27, 34, 29]. The table also contains the time taken
to build a kd-tree (for blacklist and dualtree-kd)
and a cover tree (for dualtree-ct). Cover trees are
far more complex to build than kd-trees; this explains
the long cover tree build time. Even so, the tree only
needs to be built once during the k-means run. If re-
sults are required for multiple values of k—such as in
the X-means algorithm [32]—then the tree built on the
points may be re-used.

Clusters were initialized using the Bradley-Fayyad
refined start procedure [7]; however, this was too slow
for the very large datasets, so in those cases points were
randomly sampled as the initial centroids. k-means was
then run until convergence on each dataset. These sim-
ulations were performed on a modest consumer desk-
top with an Intel i5 with 16GB RAM, using mlpack’s
benchmarking system [18].

Average runtime per iteration results are shown in
Table 5. The amount of work that is being pruned away
is somewhat unclear from the runtime results, because
the elkan and hamerly algorithms access points linearly
and thus benefit from cache effects; this is not true of the
tree-based algorithms. Therefore, the average number
of distance calculations per iteration are also included
in the results.

It is immediately clear that for large datasets,
dualtree-kd is fastest, and dualtree-ct is almost as
fast. elkan, because it holds kN bounds, is able to
prune away a huge amount of work and is very fast for
small datasets; however, maintaining all of these bounds
becomes prohibitive with large k and the algorithm
exhausts all available memory. blacklist has the
same issue: on the largest datasets, with the largest k
values, the space required to maintain all the blacklists
is too much. This is also true of yinyang, which must
maintain bounds between each point and each group of
centroids. For large k, this burden becomes too much
and the algorithm fails. hamerly and the dual-tree
algorithms, on the other hand, are the best-behaved

avg. per-iteration runtime (distance calculations)
dataset k iter. elkan hamerly yinyang blacklist dualtree-kd dualtree-ct

cloud 3 8 1.50e-4s (867) 1.11e-4s (1.01k) 1.11e-1s (2.00k) 4.68e-5s (302) 1.27e-4s (278) 2.77e-4s (443)
cloud 10 14 2.09e-4s (1.52k) 1.92e-4s (4.32k) 7.66e-2s (9.55k) 1.55e-4s (2.02k) 3.69e-4s (1.72k) 5.36e-4s (2.90k)
cloud 50 19 5.87e-4s (2.57k) 5.30e-4s (21.8k) 9.66e-3s (15.6k) 8.20e-4s (12.6k) 1.23e-3s (5.02k) 1.09e-3s (9.84k)

cup98b 50 224 0.0445s (25.9k) 0.0557s (962k) 0.0465s (313k) 0.0409s (277k) 0.0955s (254k) 0.1089s (436k)
cup98b 250 168 0.1972s (96.8k) 0.4448s (8.40M) 0.1417s (898k) 0.2033s (1.36M) 0.4585s (1.38M) 0.3237s (2.73M)
cup98b 750 116 1.1719s (373k) 1.8778s (36.2M) 0.2653s (1.26M) 0.6365s (4.11M) 1.2847s (4.16M) 0.8056s (81.4M)
birch3 50 129 0.0194s (24.2k) 0.0093s (566k) 0.0378s (399k) 0.0030s (42.7k) 0.0082s (37.4k) 0.0378s (67.9k)
birch3 250 812 0.0895s (42.8k) 0.0314s (2.59M) 0.0711s (239k) 0.0164s (165k) 0.0183s (79.7k) 0.0485s (140k)
birch3 750 373 0.3253s (292k) 0.0972s (8.58M) 0.1423s (476k) 0.0554s (450k) 0.02989s (126k) 0.0581s (235k)
phy 50 34 0.0668s (82.3k) 0.1064s (1.38M) 0.1072s (808k) 0.0081s (33.0k) 0.02689s (67.8k) 0.0945s (188k)
phy 250 38 0.1627s (121k) 0.4634s (6.83M) 0.2469s (2.39M) 0.0249s (104k) 0.0398s (90.4k) 0.1023s (168k)
phy 750 35 0.7760s (410k) 2.9192s (43.8M) 0.6418s (5.61M) 0.2478s (1.19M) 0.2939s (1.10M) 0.3330s (1.84M)

power 25 4 0.3872s (2.98M) 0.2880s (12.9M) 1.1257s (33.5M) 0.0301s (216k) 0.0950s (87.4k) 0.6658s (179k)
power 250 101 2.6532s (425k) 0.1868s (7.83M) 1.2684s (10.3M) 0.1504s (1.13M) 0.1354s (192k) 0.6405s (263k)
power 1000 870 out of memory 6.2407s (389M) 4.4261s (9.41M) 0.6657s (2.98M) 0.4115s (1.57M) 1.1799s (4.81M)
power 5000 504 out of memory 29.816s (1.87B) 22.7550s (58.6M) 4.1597s (11.7M) 1.0580s (3.85M) 1.7070s (12.3M)
power 15000 301 out of memory 111.74s (6.99B) out of memory out of memory 2.3708s (8.65M) 2.9472s (30.9M)
lcdm 500 507 out of memory 6.4084s (536M) 8.8926s (44.5M) 0.9347s (4.20M) 0.7574s (3.68M) 2.9428s (7.03M)
lcdm 1000 537 out of memory 16.071s (1.31B) 18.004s (74.7M) 2.0345s (5.93M) 0.9827s (5.11M) 3.3482s (10.0M)
lcdm 5000 218 out of memory 64.895s (5.38B) out of memory 12.909s (16.2M) 1.8972s (8.54M) 3.9110s (19.0M)
lcdm 20000 108 out of memory 298.55s (24.7B) out of memory out of memory 4.1911s (17.8M) 5.5771s (43.2M)

Table 5: Empirical results for k-means.

with memory usage and do not have any issues with
large N or large k; however, hamerly is very slow on
large datasets because it is not able to prune many
points at once.

Similar to the observations about the blacklist

algorithm, the tree-based approaches are less effective
in higher dimensions [31]. This is an important point:
the performance of tree-based approaches suffer in high
dimensions in part because the bound dmin(·, ·) gen-
erally becomes looser as dimension increases. This is
partly because the volume of nodes in high dimensions
is much higher; consider that a ball has volume that is
exponential in the dimension.

Even so, in our results, we see speedup in reason-
able dimensions (for example, the phy dataset has 78
dimensions). Further, because our algorithm is tree-
independent, we may use tree structures tailored to
high-dimensional data [3]—including ones that have not
yet been developed. From our results we believe as a
rule of thumb that the dual-tree k-means algorithm can
be effective up to a hundred dimensions or more.

Another clear observation is that when k is scaled
on a single dataset, the dualtree-kd and dualtree-ct

algorithms nearly always scale better (in terms of run-
time) than the other algorithms. These results show
that our algorithm satisfies its original goals: to be able
to scale effectively to large k and N .

8 Conclusion and future directions

Using four pruning strategies, we have developed a flex-
ible, tree-independent dual-tree k-means algorithm that
is the best-performing algorithm for large k and large
datasets in small-to-medium dimensions. It is theoreti-

cally favorable, has a small memory footprint, and may
be used in conjunction with initial point selection and
approximation schemes for additional speedup.

There are still interesting future directions to pur-
sue, though. The first direction is parallelism: because
our dual-tree algorithm is agnostic to the type of traver-
sal used, we may use a parallel traversal [14], such as an
adapted version of a recent parallel dual-tree algorithm
[26]. The second direction is kernel k-means and other
spectral clustering techniques: our algorithm may be
merged with the ideas of [15] to perform kernel k-means.
The third direction is theoretical. Recently, more gen-
eral notions of intrinsic dimensionality have been pro-
posed [24, 1]; these may enable tighter and more descrip-
tive runtime bounds. Our work thus provides a useful
and fast k-means algorithm and also opens promising
avenues to further accelerated clustering algorithms.

References

[1] L. Amsaleg, O. Chelly, T. Furon, S. Girard, M.E.
Houle, K. Kawarabayashi, and M. Nett. Estimating lo-
cal intrinsic dimensionality. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 29–38, 2015.

[2] D. Arthur and S. Vassilvitskii. k-means++: The ad-
vantages of careful seeding. In Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 1027–1035, 2007.

[3] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman,
and A.Y. Wu. An optimal algorithm for approximate
nearest neighbor searching in fixed dimensions. Jour-
nal of the ACM (JACM), 45(6):891–923, 1998.

[4] S. Bengio, J. Weston, and D. Grangier. Label embed-
ding trees for large multi-class tasks. In Advances in

Neural Information Processing Systems 23 (NIPS ’10),
volume 23, page 3, 2010.

[5] J.L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[6] A. Beygelzimer, S.M. Kakade, and J. Langford. Cover
trees for nearest neighbor. In Proceedings of the 23rd
International Conference on Machine Learning (ICML
’06), pages 97–104, 2006.

[7] P.S. Bradley and U.M. Fayyad. Refining initial points
for k-means clustering. In Proceedings of the 15th
International Conference on Machine Learning (ICML
’98), pages 91–99, 1998.

[8] F. Can and E.A. Ozkarahan. Concepts and effective-
ness of the cover-coefficient-based clustering methodol-
ogy for text databases. ACM Transactions on Database
Systems, 15(4):483–517, December 1990.

[9] A. Coates, A.Y. Ng, and H. Lee. An analysis of single-
layer networks in unsupervised feature learning. In
Proceedings of AISTATS, pages 215–223, 2011.

[10] G. Csurka, C. Dance, L. Fan, J. Willamowski, and
C. Bray. Visual categorization with bags of keypoints.
In Workshop on Statistical Learning in Computer Vi-
sion, ECCV, volume 1, pages 1–16, 2004.

[11] R.R. Curtin. Improving dual-tree algorithms. PhD
thesis, Georgia Institute of Technology, August 2015.

[12] R.R. Curtin, J.R. Cline, N.P. Slagle, W.B. March,
P. Ram, N.A. Mehta, and A.G. Gray. MLPACK: A
scalable C++ machine learning library. Journal of
Machine Learning Research, 14:801–805, 2013.

[13] R.R. Curtin, D. Lee, W.B. March, and P. Ram. Plug-
and-play dual-tree algorithm runtime analysis. arXiv
preprint arXiv:1501.05222, 2015.

[14] R.R. Curtin, W.B. March, P. Ram, D.V. Anderson,
A.G. Gray, and C.L. Isbell Jr. Tree-independent dual-
tree algorithms. In Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML ’13),
pages 1435–1443, 2013.

[15] R.R. Curtin and P. Ram. Dual-tree fast exact max-
kernel search. Statistical Analysis and Data Mining,
7(4):229–253, 2014.

[16] R.R. Curtin, P. Ram, and A.G. Gray. Fast exact max-
kernel search. In Proceedings of SIAM International
Conference on Data Mining 2013 (SDM ’13), pages 1–
9, 2013.

[17] Y. Ding, Y. Zhao, X. Shen, M. Musuvathi, and
T. Mytkowicz. Yinyang k-means: A drop-in replace-
ment of the classic k-means with consistent speedup. In
Proceedings of The 32nd International Conference on
Machine Learning (ICML ’15), pages 579–587, 2015.

[18] M. Edel, A. Soni, and R.R. Curtin. An automatic
benchmarking system. In Proceedings of the NIPS
2014 Workshop on Software Engineering for Machine
Learning, 2014.

[19] C. Elkan. Using the triangle inequality to accelerate k-
means. In Proceedings of the 20th International Con-
ference on Machine Learning (ICML ’03), volume 3,
pages 147–153, 2003.

[20] G. Frahling and C. Sohler. A fast k-means implemen-
tation using coresets. International Journal of Com-
putational Geometry & Applications, 18(06):605–625,
2008.

[21] A.G. Gray and A.W. Moore. ‘N-Body’ problems in
statistical learning. In Advances in Neural Information
Processing Systems 14 (NIPS 2001), volume 4, pages
521–527, 2001.

[22] A.G. Gray and A.W. Moore. Nonparametric den-
sity estimation: Toward computational tractability.
In SIAM International Conference on Data Mining
(SDM), pages 203–211, 2003.

[23] G. Hamerly. Making k-means even faster. In Pro-
ceedings of the 2010 SIAM International Conference
on Data Mining, pages 130–140, 2010.

[24] M.E. Houle. Dimensionality, discriminability, den-
sity and distance distributions. In 2013 IEEE 13th
International Conference on Data Mining Workshops
(ICDMW), pages 468–473, 2013.

[25] Y.C. Kwon, D. Nunley, J.P. Gardner, M. Balazinska,
B. Howe, and S. Loebman. Scalable clustering algo-
rithm for n-body simulations in a shared-nothing clus-
ter. In Scientific and Statistical Database Management,
pages 132–150. Springer, 2010.

[26] D. Lee, R.W. Vuduc, and A.G. Gray. A distributed
kernel summation framework for general-dimension
machine learning. In Proceedings of the 2012 SIAM
International Conference on Data Mining (SDM ’12),
pages 391–402, 2012.

[27] M. Lichman. UCI machine learning repository, 2013.
[28] T. Liu, A.W. Moore, K. Yang, and A.G. Gray. An in-

vestigation of practical approximate nearest neighbor
algorithms. In Advances in Neural Information Pro-
cessing Systems 18 (NIPS ’04), pages 825–832, 2004.

[29] R. Lupton, J.E. Gunn, Z. Ivezic, G.R. Knapp, and
S. Kent. The SDSS imaging pipelines. In Astronomical
Data Analysis Software and Systems X, volume 238,
page 269, 2001.

[30] A.W. Moore. Very fast em-based mixture model
clustering using multiresolution kd-trees. Advances
in Neural Information Processing Systems, pages 543–
549, 1999.

[31] D. Pelleg and A.W. Moore. Accelerating exact k-means
algorithms with geometric reasoning. In Proceedings of
KDD ’99, pages 277–281. ACM, 1999.

[32] D. Pelleg and A.W. Moore. X-means: Extending k-
means with efficient estimation of the number of clus-
ters. In Proceedings of the Seventeenth International
Conference on Machine Learning (ICML ’00), pages
727–734, 2000.

[33] P. Ram, D. Lee, W.B. March, and A.G. Gray. Linear-
time algorithms for pairwise statistical problems. Ad-
vances in Neural Information Processing Systems 22
(NIPS 2009), pages 1527–1535, 2009.

[34] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
A new data clustering algorithm and its applications.
Data Mining and Knowledge Discovery, 1(2):141–182,
1997.

A Dual-Tree Algorithm for Fast k-means Clustering With Large k:

Supplementary Material

Ryan R. Curtin
ryan@ratml.org

Unfortunately, space constraints prevent in-depth
explanation of each of the points in the main paper.
This supplementary material is meant to clarify all of
the parts of the dual-tree k-means algorithm that space
did not permit in the main paper.

1 Updating the tree

In addition to updating the centroids, the bounding
information contained within the tree must be updated
according to pruning strategies 3 and 4. Unfortunately,
this yields a particularly complex recursive algorithm,
given in Algorithm 1.

The first if statement (lines 4–10) catches the case
where the parent cannot change owner next iteration;
in this case, the parent’s upper bound and lower bound
can be taken as valid bounds. In addition, the upper
and lower bounds are adjusted to account for cluster
movement between iterations, so that the bounds are
valid for next iteration.

If the node Ni has an owner, the algorithm then at-
tempts to use the pruning rules established in Equations
4 and 6 in the main paper, to determine if the owner of
Ni can change next iteration. If not, canchange(Ni) is
set to false (line 18). On the other hand, if the prun-
ing check fails, the upper bound is tightened and the
pruning check is performed a second time. It is worth
noting that dmax(Ni, cj) may not actually be less than
the current value of ub(Ni), which is why the min is
necessary.

After recursing into the children of Ni, if Ni could
have an owner change, each point is individually checked
using the same approach (lines 31–45). However, there
is a slight difference: if a point’s owner can change, the
upper and lower bounds must be set to∞ (lines 44–45).
This is only necessary with points; BaseCase() does not
take bounding information from previous iterations into
account, because no work can be avoided in that way.

Then, we may set canchange(Ni) to false if every
point in Ni and every child of Ni cannot change owners
(and the points and nodes do not necessarily have
to have the same owner). Otherwise, we must set

pruned(Ni) to 0 for the next iteration.

2 Coalescing the tree

After UpdateTree() is called, the tree must be
coalesced to remove any nodes where canchange(·) =
false. This can be accomplished via a single pass over
the tree. A simple implementation is given in Algorithm
2. DecoalesceTree() may be implemented by simply
restoring a pristine copy of the tree which was cached
right before CoalesceTree() is called.

3 Runtime bound proof

We can use adaptive algorithm analysis techniques in
order to bound the running time of Algorithm 1 in
the main paper, based on [2] and [1]. This analysis
depends on the expansion constant, which is a measure
of intrinsic dimension defined below, originally from [6].

Definition 3.1. Let BS(p,∆) be the set of points in S
within a closed ball of radius ∆ around some p ∈ S with
respect to a metric d:

(3.1) BS(p,∆) = {r ∈ S : d(p, r) ≤ ∆}.

Then, the expansion constant of S with respect
to the metric d is the smallest c ≥ 2 such that

(3.2) |BS(p, 2∆)| ≤ c|BS(p,∆)| ∀ p ∈ S, ∀ ∆ > 0.

The expansion constant is a bound on the number
of points which fall into balls of increasing sizes. A low
expansion constant generally means that search tasks
like nearest neighbor search can be performed quickly
with trees, whereas a high expansion constant implies
a difficult dataset. Thus, if we assume a bounded
expansion constant like in previous theoretical works
[1, 8, 6, 3, 2], we may assemble a runtime bound that
reflects the difficulty of the dataset.

Our theoretical analysis will concern the cover tree
in particular. The cover tree is a complex data structure
with appealing theoretical properties. We will only

Algorithm 1 UpdateTree() for dual-tree k-means.

1: Input: node Ni, ub(·), lb(·), pruned(·), closest(·), canchange(·), centroid movements m
2: Output: updated ub(·), lb(·), pruned(·), canchange(·)

3: canchange(Ni)← true

4: if Ni has a parent and canchange(parent(Ni)) = false then
5: {Use the parent’s bounds.}
6: closest(Ni)← closest(parent(Ni))
7: j ← index of closest(Ni), canchange(Ni)← false

8: ub(Ni)← ub(Ni) + mj , lb(Ni)← lb(Ni) + maxi mi

9: else if pruned(Ni) = k − 1 then
10: {Ni is owned by a single cluster. Can that owner change next iteration?}
11: j ← index of closest(Ni)
12: ub(Ni)← ub(Ni) + mj , lb(Ni)← max (lb(Ni)−maxi mi,mink 6=j d(ck, cj)/2)
13: if ub(Ni) < lb(Ni) then
14: {The owner cannot change next iteration.}
15: canchange(Ni)← false

16: else
17: {Tighten the upper bound and try to prune again.}
18: ub(Ni)← min (ub(Ni), dmax(Ni, cj))
19: if ub(Ni) < lb(Ni) then canchange(Ni)← false

20: end if
21: else
22: j ← index of closest(Ni)
23: ub(Ni)← ub(Ni) + mj , lb(Ni)← lb(Ni)−maxk mk

24: end if
25: {Recurse into each child.}
26: for each child Nc of Ni, call UpdateTree(Nc)

27: {Try to determine points whose owner cannot change if Ni can change owners.}
28: if canchange(Ni) = true then
29: for pi ∈Pi do
30: j ← index of closest(pi)
31: ub(pi)← ub(pi) + mj , lb(pi)← min (lb(pi)−maxk mk,mink 6=j d(ck, cj)/2)
32: if ub(pi) < lb(pi) then
33: canchange(pi)← false

34: else
35: {Tighten the upper bound and try again.}
36: ub(pi)← min (ub(pi), d(pi, cj))
37: if ub(pi) < lb(pi) then
38: canchange(pi)← false

39: else
40: {Point cannot be pruned.}
41: ub(pi)←∞, lb(pi)←∞
42: end if
43: end if
44: end for
45: else
46: for pi ∈Pi where canchange(pi) = false do
47: {Maintain upper and lower bounds for points whose owner cannot change.}
48: j ← index of closest(pi)
49: ub(pi)← ub(pi) + mj , lb(pi)← lb(pi)−maxk mk

50: end for
51: end if
52: if canchange(·) = false for all children Nc of Ni and all points pi ∈Pi then canchange(Ni)← false

53: if canchange(Ni) = true then pruned(Ni)← 0

Algorithm 2 CoalesceTree() for dual-tree k-means.

1: Input: tree T
2: Output: coalesced tree T

3: {A depth-first recursion to hide nodes where
canchange(·) is false.}

4: s← {root(T)}
5: while |s| > 0 do
6: Ni ← s.pop()

7: {Special handling is required for leaf nodes and
the root node.}

8: if |Ci| = 0 then
9: continue

10: else if Ni is the root node then
11: for Nc ∈ Ci do
12: s.push(Nc)
13: end for
14: end if

15: {See if children can be removed.}
16: for Nc ∈ Ci do
17: if canchange(Nc) = false then
18: remove child Nc

19: else
20: s.push(Nc)
21: end if
22: end for

23: {If only one child is left, then this node is unnec-
essary.}

24: if |Ci| = 1 then
25: add child to parent(Ni)
26: remove Ni from parent(Ni)’s children
27: end if
28: end while

29: return T

summarize the relevant properties here. Interested
readers should consult the original cover tree paper [1]
and later analyses [8, 2] for a complete understanding.

A cover tree is a leveled tree; that is, each cover
tree node Ni is associated with an integer scale si. The
node with largest scale is the root of the tree; each
node’s scale is greater than its children’s. Each node
Ni holds one point pi, and every descendant point of
Ni is contained in the ball centered at pi with radius
2sr+1. Further, every cover tree satisfies the following
three invariants [1]:

• (Nesting.) When a point pi is held in a node at
some scale si, then each smaller scale will also have
a node containing pi.

• (Covering tree.) For every point pi held in a node

Ni at scale si, there exists a node with point pj
and scale si + 1 which is the parent of Ni, and
d(pi, pj) < 2si+1.

• (Separation.) Given distinct nodes Ni holding pi
and Nj holding pj both at scale si, d(pi, pj) > 2si .

A useful result shows there are O(N) points in
a cover tree (Theorem 1, [1]). Another measure of
importance of a cover tree is the cover tree imbalance,
which aims to capture how well the data is distributed
throughout the cover tree. For instance, consider a tree
where the root, with scale sr, has two nodes; one node
corresponds to a single point and has scale −∞, and
the other node has scale sr − 1 and contains every
other point in the dataset as a descendant. This is
very imbalanced, and a tree with many situations like
this will not perform well for search tasks. Below, we
reiterate the definition of cover tree imbalance from [2].

Definition 3.2. The cover node imbalance in(Ni) for
a cover tree node Ni with scale si in the cover tree T
is defined as the cumulative number of missing levels
between the node and its parent Np (which has scale
sp). If the node is a leaf child (that is, si = −∞),
then number of missing levels is defined as the difference
between sp and smin− 1 where smin is the smallest scale
of a non-leaf node in T . If Ni is the root of the tree,
then the cover node imbalance is 0. Explicitly written,
this calculation is

(3.3)

in(Ni) =

sp − si − 1 if Ni is not a

leaf and not

the root node

max(sp − smin − 1, 0) if Ni is a leaf

0 if Ni is the root.

This simple definition of cover node imbalance is
easy to calculate, and using it, we can generalize to a
measure of imbalance for the full tree.

Definition 3.3. The cover tree imbalance it(T) for a
cover tree T is defined as the cumulative number of
missing levels in the tree. This can be expressed as a
function of cover node imbalances easily:

(3.4) it(T) =
∑

Ni∈T

in(Ni).

Bounding it(T) is non-trivial, but empirical results
suggest that imbalance scales linearly with the size

of the dataset, when the expansion constant is well-
behaved. A bound on it(T) is still an open problem
at the time of this writing.

With these terms introduced, we may introduce
a slightly adapted result from [2], which bounds the
running time of nearest neighbor search.

Theorem 3.1. (Theorem 2, [2].) Using cover trees,
the standard cover tree pruning dual-tree traversal, and
the nearest neighbor search BaseCase() and Score()

as given in Algorithms 2 and 3 of [2], respectively, and
also given a reference set Sr with expansion constant
cr, and a query set Sq, where the range of pairwise
distances in Sr is completely contained in the range of
pairwise distances in Sq, the running time of nearest
neighbor search is bounded by O(c4rc

5
qr(N + it(Tq))),

where cqr = max((maxpq∈Sq
c′r), cr), where c′r is the

expansion constant of the set Sr ∪ {pq}.

Now, we may adapt this result slightly.

Theorem 3.2. The dual-tree k-means algorithm with
BaseCase() as in Algorithm 2 in the main paper and
Score() as in Algorithm 3 in the main paper, with a
point set Sq that has expansion constant cq and size N ,
and k centroids C with expansion constant ck, takes no
more than O(c4kc

5
qk(N + it(Tq))) time.

Proof. Both Score() and BaseCase() for dual-tree k-
means can be performed in O(1) time. In addition,
the pruning of Score() for dual-tree k-means is at
least as tight as Score() for nearest neighbor search:
the pruning rule in Equation 2 in the main paper
is equivalent to the pruning rule for nearest neighbor
search. Therefore, dual-tree k-means can visit no more
nodes than nearest neighbor search would with query
set Sq and reference set C. Lastly, note that the range
of pairwise distances of C will be entirely contained in
the range of pairwise distances in Sq, to see that we can
use the result of Theorem 3.1. Adapting that result,
then, yields the statement of the algorithm.

The expansion constant of the centroids, ck, may
be understood as the intrinsic dimensionality of the
centroids C. During each iteration, the centroids
change, so those iterations that have centroids with high
intrinsic dimensionality cannot be bounded as tightly.
More general measures of intrinsic dimensionality, such
as those recently proposed by Houle [5], may make the
connection between cq and ck clear.

Next, we turn to bounding the entire algorithm.

Theorem 3.3. A single iteration of the dual-tree k-
means algorithm on a dataset Sq using the cover tree
T , the standard cover tree pruning dual-tree traversal,

BaseCase() as given in Algorithm 2 in the main paper,
Score() as given in Algorithm 3 in the main paper, will
take no more than

(3.5) O(c4kc
5
qk(N + it(T)) + c9kk log k)

time, where ck is the expansion constant of the cen-
troids, cqk is defined as in Theorem 3.2, and it(T) is
the imbalance of the tree as defined in Definition 3.3.

Proof. Consider each of the steps of the algorithm
individually:

• CoalesceNodes() can be performed in a single pass
of the cover tree N , which takes O(N) time.

• Building a tree on the centroids (Tc) takes
O(c6kk log k) time due to the result for cover tree
construction time [1].

• The dual-tree algorithm takes O(c4kc
5
qk(N +it(T)))

time due to Theorem 3.2.

• DecoalesceNodes() can be performed in a single
pass of the cover tree N , which takes O(N) time.

• UpdateCentroids() can be performed in a single
pass of the cover tree N , so it also takes O(N)
time.

• UpdateTree() depends on the calculation of how
much each centroid has moved; this costs O(k)
time. In addition, we must find the nearest centroid
of every centroid; this is nearest neighbor search,
and we may use the runtime bound for monochro-
matic nearest neighbor search for cover trees from
[8], so this costs O(c9kk) time. Lastly, the actual
tree update visits each node once and iterates over
each point in the node. Cover tree nodes only hold
one point, so each visit costs O(1) time, and with
O(N) nodes, the entire update process costs O(N)
time. When we consider the preprocessing cost
too, the total cost of UpdateTree() per iteration
is O(c9kk + N).

We may combine these into a final result:

O(N) + O(c6kk log k) + O(c4kc
5
qk(N + it(T))) +

O(N) + O(N) + O(c9kk + N)(3.6)

and after simplification, we get the statement of the
theorem:

(3.7) O(c4kc
5
qk(N + it(T)) + c9kk log k).

Therefore, we see that under some assumptions on
the data, we can bound the runtime of the dual-tree k-
means algorithm to something tighter than O(kN) per
iteration. As expected, we are able to amortize the cost
of k across all N nodes, giving amortized O(1) search
for the nearest centroid per point in the dataset. This is
similar to the results for nearest neighbor search, which
obtain amortized O(1) search for a single query point.
Also similar to the results for nearest neighbor search is
that the search time may, in the worst case, degenerate
to O(kN + k2) when the assumptions on the dataset
are not satisfied. However, empirical results [9, 4, 7, 1]
show that well-behaved datasets are common in the
real world, and thus degeneracy of the search time is
uncommon.

Comparing this bound with the bounds for other
algorithms is somewhat difficult; first, none of the
other algorithms have bounds which are adaptive to the
characteristics of the dataset. It is possible that the
blacklist algorithm could be refactored to use the cover
tree, but even if that was done it is not completely clear
how the running time could be bounded. How to apply
the expansion constant to an analysis of Hamerly’s
algorithm and Elkan’s algorithm is also unclear at the
time of this writing.

Lastly, the bound we have shown above is poten-
tially loose. We have reduced dual-tree k-means to
the problem of nearest neighbor search, but our prun-
ing rules are tighter. Dual-tree nearest neighbor search
assumes that every query node will be visited (this is
where the O(N) in the bound comes from), but dual-
tree k-means can prune a query node entirely if all but
one cluster is pruned (Strategy 2). These bounds do
not take this pruning strategy into account, and they
also do not consider the fact that coalescing the tree
can greatly reduce its size. These would be interesting
directions for future theoretical work.

References

[1] A. Beygelzimer, S.M. Kakade, and J. Langford. Cover
trees for nearest neighbor. In Proceedings of the 23rd
International Conference on Machine Learning (ICML
’06), pages 97–104, 2006.

[2] R.R. Curtin, D. Lee, W.B. March, and P. Ram. Plug-
and-play dual-tree algorithm runtime analysis. arXiv
preprint arXiv:1501.05222, 2015.

[3] R.R. Curtin and P. Ram. Dual-tree fast exact max-
kernel search. Statistical Analysis and Data Mining,
7(4):229–253, 2014.

[4] A.G. Gray and A.W. Moore. ‘N-Body’ problems in
statistical learning. In Advances in Neural Information
Processing Systems 14 (NIPS 2001), volume 4, pages
521–527, 2001.

[5] M.E. Houle. Dimensionality, discriminability, den-
sity and distance distributions. In 2013 IEEE 13th
International Conference on Data Mining Workshops
(ICDMW), pages 468–473, 2013.

[6] D.R. Karger and M. Ruhl. Finding nearest neighbors
in growth-restricted metrics. In Proceedings of the
Thirty-Fourth Annual ACM Symposium on Theory of
Computing (STOC 2002), pages 741–750, 2002.

[7] W.B. March, P. Ram, and A.G. Gray. Fast Euclidean
minimum spanning tree: algorithm, analysis, and
applications. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD ’10), pages 603–612, 2010.

[8] P. Ram, D. Lee, W.B. March, and A.G. Gray. Linear-
time algorithms for pairwise statistical problems. Ad-
vances in Neural Information Processing Systems 22
(NIPS 2009), pages 1527–1535, 2009.

[9] P. Ram, D. Lee, H. Ouyang, and A.G. Gray. Rank-
approximate nearest neighbor search: Retaining mean-
ing and speed in high dimensions. Advances in Neural
Information Processing Systems, 22, 2009.

