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ABSTRACT

In this work we aim to learn a Mahalanobis distance to im-
prove the performance of phoneme classification using the
standard 39-dimensional MFCC features. To learn and to
evaluate the performance of our distance, we use the simple k-
nearest-neighbors (k-NN) classifier. Although this classifier
exhibits low performance relative to state-of-the-art phoneme
classifiers, it can be used to determine a distance metric that is
applicable to many other better-performing machine learning
methods. We devise a novel optimization method that min-
imizes the error function of the k-NN classifier with respect
to the covariance matrix of the Mahalanobis distance, based
on finite-difference stochastic approximation (FDSA) gradi-
ent estimates combined with a random perturbation term to
avoid local minima. We apply our method to the problem
of phoneme classification with the k-NN classifier and show
that our learned distance provides performance improvement
of up to 8.19% over the standard k-NN classifier, and addi-
tionally outperforms other state-of-the-art distance learning
methods by approximately 4 percentage points. We also find
that the computational complexity of our method, while not
optimal, is better than other distance learning methods. The
performance improvements for individual phoneme classes
are given. The distances learned are applicable to other scale-
variant machine learning methods, such as support vector ma-
chines, multidimensional scaling, and maximum variance un-
folding, as well as others.

Index Terms— distance learning, Mahalanobis distance,
phoneme classification, k-nearest-neighbors

1. INTRODUCTION

Distance learning is a popular topic in recent literature [1, 2,
3, 4, 5, 6]. The motivation for learning a distance comes from
the intuitive observation that the performance of any machine
learning method that uses a distance will be affected by a scal-
ing of the dimensions of the dataset it is run on. From this
observation, we can propose that there exists a particular dis-
tance that we could use to improve performance.

In this paper, we choose to restrict the problem to phoneme
classification and the method to the k-nearest-neighbors (k-

NN) classifier. k-NN is an attractive technique because it is
distribution-free and entirely data-driven.

The k-nearest-neighbors classifier can be easily adapted
to use a different distance metric; the distance between points
is no longer the Euclidean distance but instead any arbitrary
distance function. The performance of the classifier is heavily
dependent on the distance chosen. In this paper, we restrict
the distance functions to be diagonally weighted Euclidean
distances (that is, the Mahalanobis distance with a diagonal
covariance matrix).

We propose to optimize the classification error of the
k-NN classifier using a simple, novel optimization method
based on existing techniques and involving random perturba-
tions to avoid local minima. Then, we apply this method to
perform phoneme classification on MFCC features from the
TIMIT speech dataset [7] and show that the learned metric
improves classification scores by up to 8 percentage points.

Because the distance learned using k-NN will also be
applicable to a vast array of other machine learning methods
that depend on distance functions, the choice of such a simple
classifier is justified. We expect that the significant perfor-
mance gains exhibited in k-NN will be reflected in other
methods; for instance, support vector machines, kernel PCA,
multidimensional scaling, or even dimensionality reduction
techniques such as maximum variance unfolding (MVU),
which depends highly on the distance between points. The
performance of any scale-variant method should be improved
using the distance learned by our method; we have only
mentioned a few possibilities above.

In addition to the generalizability to any scale-variant
method, it is also intuitive to see that we can generalize to
other machine learning tasks. The technique we have cho-
sen, the k-NN classifier, gives classifications as results. The
learned distance, however, could also be easily applied to
a method that gives likelihoods as results (such as the naive
Bayes classifier); the use of likelihoods as opposed to discrete
classification is a common approach in signal processing.

2. NEAREST NEIGHBORS CLASSIFICATION

The k-nearest-neighbors (k-NN) classifier is a nonparamet-
ric machine learning technique that is commonly used as a



baseline for comparison with more advanced techniques (for
example, in [8]). Its simplicity and intuitiveness help make it
a popular and attractive technique.

To formulate our problem, we assume that we have a
dataset X ∈ <n×d which contains n points of dimensionality
d. We will refer to an individual point i as xi. We assume
that this dataset contains some number of classes, and the true
class label of a point xi is denoted as yi.

To use this technique, we calculate the k neighbors with
minimum distance to our query point xi according to some
distance function d(xi, xj). Typically, the standard Euclidean
distance is used. Then, we take a majority vote of the k neigh-
bors to predict the class of the query point i (ŷi). We repeat
this procedure for each query point, and if we have the true
classes of these query points to compare our results with (yi),
we can define an error function using 0-1 loss:

E(X) =
n∑
i=1

L(ŷi, yi) (1)

in which L(ŷi, yi) is the 0-1 loss function taking the value 1
only when ŷi 6= yi. Therefore, our error measure is simply
counting the total number of misclassified points.

3. DISTANCE LEARNING

As noted earlier, the Euclidean distance is the standard dis-
tance function used in k-NN. This is not a requirement,
though; we can use any distance function d(xi, xj). We will
restrict our choice of distance functions specifically to the
Mahalanobis distance, which is defined by

d(xi, xj)
2 = (xi − xj)TM(xi − xj) (2)

in which M = ATA is a positive semidefinite matrix. This
is equivalent to weighting the dataset with the matrix A. For
A = In, (2) simplifies to the standard Euclidean distance. It
is clear that the choice of the matrix A affects the error of our
classifier, and we can conclude that there exists an optimal
matrix Â that minimizes the error function given in (1).

Therefore, our goal is to find Â which minimizes the error
function EA(X), in which EA(X) is E(X) applied to k-NN
using (2) as a distance measure. Due to the computational
complexity of allowing any arbitrary matrix A, we will only
consider the case where the matrix A is restricted to be diag-
onal.

4. PERTURBATION-BASED OPTIMIZATION

The error function EA(X) is non-smooth, non-convex, and
discontinuous, which presents a difficult problem for opti-
mization. Figure 1 demonstrates this property. Using a small
subset of the TIMIT database, we plot the error function
EA(X) with respect to only one dimension of our weighting
matrix A (in Figure 1, we have chosen dimension 2).
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Fig. 1. Error function for different A weights in dimension 2.

Other approaches to distance learning in the past refor-
mulate the problem as a semidefinite program [1] or a smooth
relaxation of the error function [4], but it is not impossible to
optimize the error function directly.

The non-smooth characteristic of this error function
means that the gradient does not exist; however, a gradient
estimate can be assembled that can be used to find minima
of the error function. Observing Figure 1, we can see that
any gradient estimate is only valid locally. Further, we have
no guarantee on the validity of a gradient estimate and there-
fore the problem lends itself to incorporating aspects of a
perturbation-based approach (or an approach incorporating
some elements of random search) in an attempt to avoid both
local minima and bad steps based on inaccurate gradient
estimates.

First, to approach the problem of the gradient estimate,
we will use the finite-difference stochastic approximation
(FDSA) approach, a common technique based on the work
of Kiefer and Wolfowitz [9]. In this approach, we perturb A
in each dimension individually to assemble a gradient esti-
mate ∇̂E(X). The formula for one dimension of the gradient
estimate is given below.

∇̂kE(X) =
EA+αek(X)− EA−αek(X)

2α
∀1 ≤ k ≤ d.

(3)
In this formula, ek ∈ <d×d represents the diagonal matrix

of all zeros, except for the kth diagonal element, which is set
to 1. Therefore, we are changing the weighting in the kth
dimension and taking evaluations of the error function based
on that. By doing this for all k dimensions, we have a gradient
estimate. The parameter α ∈ < controls the locality of the
gradient estimate. For a function with many close stationary
points, α should be set to a small value (≤ 0.01), and for a
function with few stationary points, α may be set larger.

The final gradient estimate matrix ∇̂E(X) ∈ <d×d is as-
sembled as a diagonal matrix with the kth diagonal elements
set to ∇̂kE(X).

As a side observation, it is worth noting that any other
method of finding a gradient estimate, such as simultaneous



perturbation stochastic approximation (SPSA) [10] or others,
could be used; in our work, we found the best performance
using an FDSA approach.

As noted earlier, we cannot use just this gradient estimate
as a direction (which is what the standard FDSA method does)
or we risk becoming stuck in local minima. Instead, we com-
bine our gradient estimate with random perturbations in an
attempt to avoid this issue.

Given that we are on iteration t of our optimization and
that At represents the current weighting matrix, we use an
inner iterative process (with the inner iteration number speci-
fied by j) to find a matrix Ãjt which gives an improvement in
EÃj

t
(X). Ãjt is chosen as follows:

Ãjt = At + βn

(
ηj

(
−∇̂E(X)

)
+ (1− ηj) ∆j

)
. (4)

In this formula, ∆j ∈ <d×d represents a random diago-
nal perturbation matrix. 0 ≤ βn ≤ 1 is the learning rate of
the algorithm, which should decrease to 0 as n → ∞. ηj
is a sequence starting from η0 = 1 and decreasing to 0 as j
increases.

Qualitatively, we are seeking an improvement along the
direction of our estimated gradient ∇̂E(X); but because we
know the gradient estimate is noisy, we are not guaranteed
any improvement. As a result, we iteratively add larger and
larger perturbations and depend less and less on our gradient
estimate to find an improvement. For ηj = 0 (when j is large
enough), this method is equivalent to random search.

Once we have found Ãjt (for some j) satisfying

EÃj
t
(X) < EA(X) (5)

we can update A using the following simple rule:

At+1 = Ãjt . (6)

The algorithm terminates when we have searched unsuc-
cessfully for a suitable Ãjt for long enough (j > τ for some
large τ ). We do not terminate when ||∇̂E(X)|| = 0 because
we may be stuck in a local minimum, and we may find some
Ãjt that manages to escape it. In practice, we typically chose
τ = O(100k).

A psuedocode implementation of the complete optimiza-
tion algorithm is given below in Algorithm 1. This implemen-
tation uses a linear decrease for ηj controlled by the parameter
δ, though this is not the only possible decrease scheme for η.

5. IMPLEMENTATION

The dataset chosen in this paper is the TIMIT dataset [7]. The
speech features used were MFCCs (Mel Frequency Cepstral
Coefficients) with delta and delta-delta values, the standard
speech processing feature. Variance normalization was not
performed. The Hidden Markov Model Toolkit (HTK) [11]

Algorithm 1 Psuedocode implementation of the described
optimization algorithm.
Require: α ≥ 0, β ≤ 1, η ≤ 1, δ ≤ 1, τ > 0, d > 0
A0 ← Id×d
t← 0
loop
∇̂E(X)← 0d×d
for k = 1→ d do
E+ ← EAt+αek(X)
E− ← EAt−αek(X){
∇̂E(X)

}
k,k
← E+−E−

2α

end for
j ← 0
η0 ← 1
repeat

∆j ← {any random perturbation vector}
Ãjt ← At + βn

(
ηj

(
−∇̂E(X)

)
+ (1− ηj) ∆j

)
ηj+1 = max(ηj − δ, 0)
j ← j + 1
if j > τ then

return At
end if

until EÃj
t
(X) ≤ EAt(X)

At+1 ← Ãj−1
t

t← t+ 1
end loop

was used to calculate the MFCCs. This gives a total dataset
size of 1.7 million 39-dimensional points.

For the k-nearest-neighbors calculation, the dual-tree al-
gorithm [12, 13] was used, which improves upon the O(n2)
naive approach to a more usable O(n). The chosen value of
k was 7; for the TIMIT dataset, any value between 5 and 9
produced approximately equal results for the k-NN classifier.

The update rule (4) was implemented with ηj decreas-
ing linearly from η0 = 1 to η200 = 0. For j ≥ 200, the
perturbation-based search was equivalent to simple random
search. In practice, however, the occurence of j ≥ 200 was
infrequent (this will be discussed more later). βn similarly de-
creased linearly from β0 = 0.7 to a minimum value of 0.05.
The value of α, the locality parameter, was found to perform
best when chosen between 0.15 and 0.1.

The algorithm described above was run on a small subset
of the TIMIT training dataset (12k points). We found that
classification performance when optimizing on a small subset
was equivalent to classification performance when optimizing
on the whole training dataset (1.2M points).

When a final matrix A was obtained, the TIMIT test set
(500k points) was evaluated with k-NN and the learned dis-
tance using the training set (1.2M points) as labeled reference
points.



6. RESULTS

Although the algorithm was run many times, the matrix A
tended to converge to similar classification accuracy improve-
ment levels, even though the individual weightings produced
by the algorithm tended to differ. We will focus on three of
the highest-scoring learned distances, which we denote asA1,
A2, and A3. Table 1 shows the resulting phoneme classi-
fication accuracy for these matrices, as well as the baseline
phoneme classification accuracy (I39).

In addition, other state-of-the-art methods for distance
learning were used in the same problem setting for com-
parison. The resultant performance improvements for those
methods are also given. Weinberger’s implementation of dis-
tance learning for large margin nearest neighbor classification
(the ‘LMNN2’ software package) [1] was used with the near-
est neighbors parameter k = 3 and k = 7 until convergence.
Neighborhood Components Analysis [4] was also used for
comparison, and the results of using the FDSA-based gradi-
ent descent algorithm [9] are additionally shown. For these
comparisons, k-NN classification was run with the distance
weightings produced by each on the 500k point TIMIT test
set.

Accuracy (%) Improvement (%)
Baseline (I39) 41.684%

A1 49.863% 8.19%
A2 49.845% 8.16%
A3 49.778% 8.09%

LMNN2, k = 3 44.690% 3.00%
LMNN2, k = 7 45.730% 4.05%

NCA 45.766% 4.08%
FDSA 45.938% 4.25%

Table 1. Classification accuracy for learned metrics.

Figure 2 shows the diagonals of the matrices A1, A2, and
A3 plotted against the standard identity matrix I39. A higher
weight indicates a higher importance of that dimension in
classification. Each of the three plotted matrices (A1, A2,
and A3) produced at least 8 percentage points of improve-
ment in classification over the standard k-nearest-neighbors
result (I39). The average classification improvement over all
runs of our optimization was 7.68%.

It is discernible that the first set of 13 dimensions, in each
trial, were generally found to be less important (hence, lower
weights) than the second or third set of 13 dimensions. The
weightings for dimensions 14 through 39 (which represent the
delta and delta-deltas of the MFCCs) were much more vari-
able. From this we can postulate that our algorithm found the
delta and delta-delta MFCCs to contain more discriminatory
information than the 13 MFCCs themselves.

Table 2 shows the classification results given by each of
the three selected matrices for each class of phonemes. The

Phoneme Class A1 A2 A3 I39
Stops 38.29% 37.88% 37.56% 21.82%

Affricatives 28.69% 27.87% 28.12% 14.07%
Fricatives 65.28% 65.13% 64.98% 59.32%

Nasals 45.11% 44.94% 45.45% 33.85%
Glides 48.32% 47.89% 48.07% 36.95%
Vowels 38.76% 39.01% 38.90% 31.28%

Table 2. Classification results for different phoneme classes.

results for the unweighted case (A = I39), are given for com-
parison. The phoneme class results are the combined results
of classification of the individual phonemes that make up the
particular class. The phonemes are split into the same classes
given by the TIMIT documentation [7].

We see a maximum improvement of 16.47% for stops (the
highest class-specific improvement shown), 14.62% for af-
fricatives, 5.96% for fricatives, 11.60% for nasals, 11.37%
for glides, and 7.73% for vowels.

7. DISCUSSION

It is clear from the results that our method has produced a
significant increase in accuracy for nearest-neighbors classi-
fication. Most runs of the algorithm produced classification
gains between 7 and 8 percent. As shown before, however,
the most optimal solution we found resulted in a classifica-
tion improvement of 8.19 percent, which is a non-negligible
improvement. In addition, this is a significant improvement
over the results of other state-of-the-art distance learning al-
gorithms.

Observing the phoneme class results in Table 2, we can
see that the most significant gains were achieved with stops.
A stop can be characterized intuitively not by its frequencies
but instead by the changes over time, unlike a vowel, which is
mainly constant over time. Therefore, it is reasonable to con-
clude that the improved classification performance on stops
is related to the fact that our algorithm generally weighted
dimensions 14 through 39 highly. Interestingly, A2, which
performed best on vowels, shows higher weightings for the
first 13 coefficients. This supports the intuitive idea that more
discriminatory information for a steady-state phoneme (such
as a vowel) is contained in the first 13 MFCCs.

In Figure 2 we observe drastically different weightings in
the delta and delta-delta coefficients for each matrix A1, A2,
and A3. This result would seem to indicate that each matrix
would perform better for different phonemes. Indeed, Table 2
confirms this, showing that A2 performs best for vowels, A3

performs best for glides, and A1 performs best for all other
classes.

This apparent specialization of matrices demonstrates that
our algorithm has converged to different local minima, though
the performance of each matrix is comparable. The existence
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Fig. 2. Final weights for three different trials.

of local minima so far apart further demonstrates the non-
convexity of the error function, and justifies our addition of
a stochastic term to our optimization’s direction. Compari-
son with the results obtained by the FDSA-based gradient de-
scent algorithm justify this further; in Table 1 we see that the
FDSA-only algorithm becomes trapped in a local minimum
giving only 4.25% improvement. The stochastic perturbation,
though, is able to escape it, allowing the algorithm to find a
far better local minimum.

8. COMPUTATIONAL COMPLEXITY

Computational complexity difficulties are a common issue for
distance learning. For instance, Weinberger’s formulation of
distance learning as a semidefinite problem [1] unfortunately
has significant complexity issues and suffers greatly as k is
increased. Neighborhood Components Analysis is known to
have quadratic complexity, and in our trials we found NCA to
perform significantly slower than both LMNN and our own
method.

In spite of our efforts to keep the computational load min-
imized by using fast nearest-neighbors algorithms [12, 13],
the evaluation of our error function EA(X) is still not triv-
ial, requiring 1 or 2 seconds on relatively recent hardware
for one hundredth of the TIMIT dataset (12k points). Like
many random-search optimization methods, our algorithm
can spend many iterations searching for a matrix Ãjt (in
Equation 4) before finding an improvement. In practice, we
found that when A becomes trapped in a local minimum, up
to tens of thousands of iterations could be required before an

improvement is found. This maps to computing time of an
hour to a several hours before a step is made (or the algorithm
terminates unsuccessfully).

We observed that many steps would be taken requiring
only a few inner iterations for Ãjt (meaning that the gradient
estimate produced a good step), but only occasionally would
a step require thousands of inner iterations. This is opposed
to pure random search, which generally required hundreds to
thousands of inner iterations for each step. To address the
occasional lengthy random search for a suitable step, τ was
reduced to 200, disallowing entirely random search but still
allowing perturbations. This still resulted in significant ac-
curacy improvement; the maximum improvement seen was
7.5% over I39. Leaving τ large gave the best results, although
it does incur the potentially significant computational costs
associated with random search.

9. EXTENSIONS AND CONCLUSIONS

In this work we have shown that we can improve the per-
formance of the k-nearest-neighbor classifier for phoneme
recognition by learning a new distance metric. We use a (to
our knowledge) novel optimization method based on FDSA
[9] which incorporates a random perturbation to avoid local
minima. The method is shown to produce performance im-
provements of up to 8.19 percentage points, with the highest
gains produced in the phoneme class of stops (14.25%).

While the new performance of the weighted k-NN classi-
fier is by no means impressive (with an accuracy of 49.863%
for the best learned metric), our method will generalize to



any scale-variant machine learning method. It is clear that
our method outperforms other state-of-the-art distance learn-
ing methods by approximately 4 percentage points, at least in
the problem setting we have used.

The results here can be directly applied to existing scale-
variant machine learning methods. In the introduction, we
discussed several machine learning methods that would ben-
efit from our work. The use of support vector machines for
phoneme classification has produced good results in the past,
and a distance metric learned by our algorithm is likely to im-
prove SVM results. Preliminary results seem to indicate that
our method provides some level of improvement for SVMs.

Maximum variance unfolding (MVU) [14] is another
example of a scale-variant method that has been applied to
speech for the task of dimensionality reduction [15]. It is
likely that applying a weighting matrix learned with our al-
gorithm would produce better results for MVU and may lead
to an effective lower-dimensional representation of speech.
work includes extending our results to other methods (specif-
ically, but not exclusively, MVU) and evaluating the perfor-
mance improvements.

Future work will investigate the extension of our results to
other machine learning methods (specifically, but not exclu-
sively, MVU) and evaluating the performance improvements.
In addition, the performance of our method in problem set-
tings in which competing distance learning algorithms were
proposed will be evaluated; this will give a better evaluation
of the generalizability of our method to non-speech applica-
tions.
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