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ABSTRACT

This paper is an effort to help prevent broiler chicken mor-
tality caused by stressful conditions. We assume a relation
between broiler chicken vocalizations and stress; therefore,
microphones were used to monitor a flock of birds over the
course of their lifetime (approximately 65 days). A noise
removal method based on spectral oversubtraction was de-
veloped to filter out the significant fan and heater noise and
shown to be very effective. Then, a radar processing tech-
nique was employed to count the number of vocalizations.
It was found that the number of vocalizations is an effective
technique for detecting stressful conditions, easily classifying
the gathered test cases using a threshold classifier with per-
fect accuracy. Therefore, we conclude that this system could
easily be adapted into an effective, inexpensive poultry flock
monitoring tool, and the methods developed here could be ap-
plied to other similar monitoring applications.

Index Terms— food industry, signal processing algo-
rithms, noise cancellation, additive noise, adaptive signal
processing

1. INTRODUCTION

Broiler chickens, the most common type of chicken raised
for meat production, constitute a large part of the poultry in-
dustry, with 8.55 billion broilers being raised in 2009 in the
United States alone. Occasional equipment failures or er-
rors will cause stress in the birds, causing suboptimal growth
or even death in some situations. With the average broiler
chicken having little resistance to thermal variance, bird mor-
tality due to heat stress is a significant concern for the poultry
industry.

In spite of advanced temperature and environment mon-
itoring sensors, the possibility of situations causing broiler
stress and mortality still exists. In this paper, we use audio
data from a grow-out house to show that broiler stress can
be reliably determined by the use of signal processing tech-
niques.

Audio processing has been applied to other animal clas-
sification tasks. The most popular application has been bird
song recognition [1, 2], but there are other examples. For

instance, the Dr. Doolittle project [3] attempts to classify ani-
mals based on their vocalizations. In another instance, sound
source localization was used to detect respiratory diseases in
pig houses [4], and bird song recognition has long been a pop-
ular goal [1, 2]. However, the use of audio processing to clas-
sify the condition of broiler chickens is, to our knowledge, a
novel concept. In this paper, it is shown that audio data can
be used to classify when broiler chickens are under a stressful
condition.

2. DESCRIPTION OF EXPERIMENT

For this experiment, audio data was collected from two stereo
microphone sources in a grow-out house at the University of
Georgia over the entire lifetime of the flock. During this pe-
riod, food and water are readily available to the birds at all
times. The lights in the room (in this particular room there
were no windows; this is not standard for the industry) were
on from about 5 a.m. to 1 a.m. each day.

Data was collected at 96 kHz with 24-bit samples. During
the last few days of the experiment, the temperature was man-
ually set to approximately fifteen degrees Fahrenheit above
the usual temperature of the grow-out house, thereby stress-
ing the birds. This stressing procedure was performed for six
days, for approximately three hours per day (at all other times,
the birds lived under normal environmental conditions).

The audio data was also corrupted with several environ-
mental noises. The grow-out house had three loud fans; a ceil-
ing fan, and an upper and lower ventilation fan. In addition,
an audible heater was occasionally running. Also, the doors
to the house would occasionally open and close as mainte-
nance workers ensured that the environment was acceptable
for the birds. All of these sounds are clearly audible on the
recordings and in some cases drown out bird noises entirely.

3. NOISE REMOVAL

Several options are available for removing noise from record-
ings. The Dr. Doolittle project [3] uses Ephraim-Malah noise
suppression [5] successfully. However, Ephraim-Malah en-
hancement does not entirely remove the noise. We can design



a more effective filtering method, based on spectral subtrac-
tion using minimum statistics [6].

The spectral subtraction idea oversubtracts a spectral es-
timate of the noise from the short-time Fourier transform
(STFT) frames of the signal. The oversubtraction factor is
used to suppress any residual noise. To gather the noise es-
timate, a voice activity detector is used to find sections of
the signal that are noise-only. After the noise estimate is
subtracted from the signal, the filtered signal is reconstructed
using the WOLA (windowed overlap-add) technique. A
block diagram of this scheme can be seen in Figure 1.

Fig. 1. Block Diagram of Spectral Oversubtraction System.

To adapt this to our system, we would need a voice ac-
tivity detector (VAD). The use of a VAD is unfeasible for
our scenario, because hundreds of birds are making a noise
at any time. An analysis of an individual vocalization shows
that each vocalization is essentially instantaneous (50 ms or
shorter), and will only show up in one or two STFT frames.
Our noise from the fans, on the other hand, is slow-changing
and will not cause sudden changes in the STFT magnitudes.

Therefore, if we assume that in the context of our noise
estimator every frame is noise, then we can assemble a mov-
ing noise estimate from the last several frames:

Ŵ (k, n) =
1

m

m∑
i=0

S(k, n), (1)

where S(k, n) represents the magnitude bin k of the nth
STFT frame of the signal. Accordingly, Ŵ (k, n) represents
bin k of the noise estimate magnitude for frame n. The pa-
rameter m controls the length of the average. In practice, the
best results were obtained for 10 < m < 100.

Using this noise estimate we can then estimate the clean
STFT frame using spectral oversubtraction, disallowing any
negative magnitudes:

X̂(k, n) = max(S(k, n)− αŴ (k, n), 0) (2)

with α as the oversubtraction parameter.
The phase of the original frame estimate is not modified

during the oversubtraction process. After oversubtraction,
windowed overlap-add is used to reassemble the clean signal.

3.1. Results

Figure 2(a) shows a 3D plot of STFT frames over time for an
unmodified signal taken from a data segment when multiple
fans were on. Figure 2(b) shows the same segment after noise
removal using α = 2.5 and m = 10.

(a) Unmodified signal

(b) Noise removed with oversubtraction factor of 2.5

Fig. 2. STFT frames over time for noisy and filtered data.

Clearly, the majority of the signal is suppressed, leaving
only a few sparse components. Upon reconstruction and lis-
tening, it is clear that these components are the bird vocal-
izations; and the fan noise is significantly reduced. In fact,
with the exception of minor residual noise introduced by the
noise removal process, the enhanced audio is almost identical
to a clean segment of audio (taken from when no fans or noise
disturbances were present).

The oversubtraction factor α was found to provide the best
trade-off between noise suppression and signal preservation
at a value of 2.3. Higher values removed the bird vocaliza-
tions, while smaller values allowed fan noise to remain in the
output.



With the audio effectively filtered and noise no longer a
problem, we can move on to the problem of condition classi-
fication.

4. BROILER CONDITION CLASSIFICATION

An informal discussion with farm hands and knowledge of
broiler chickens suggested that the birds make more noise
when under stress. However, a simple measurement of the
power in spectral data was not effective, likely due to some
residual noise introduced by the filtering process.

Therefore, a different approach, inspired by radar process-
ing techniques [7], was employed. In this approach, individ-
ual vocalizations are detected and counted. Detections are
found using a simple thresholding technique. At each STFT
frame, any bins above a certain predefined magnitude thresh-
old are marked. The bin (and its two neighbors) are checked
in the next frame, and if any of those are above the threshold,
they are also marked. This process continues until a frame
where neither the bin nor its neighbors are over the threshold.
This series of above-threshold frames constitutes a single de-
tection. It is important to note that we have allowed the fre-
quency of the detection to change over time by one bin per
frame.

In addition, we further constrain the allowed detection to
be within the likely range of frequencies for a bird; low fre-
quencies are ignored (to avoid any remaining fan noise) and
very high frequencies are also ignored.

This detection algorithm was then run over the entire
dataset. Figure 3 shows the average number of bird vocaliza-
tions in a 45-minute period over the course of a day when the
birds were not intentionally stressed (the x-axis represents the
hour during the day).

Fig. 3. Number of vocalizations per 45-minute period in an
average day.

During the hours when the lights are off (hours 1 to 5),
the number of vocalizations drops significantly. When the
lights turn back on, the birds immediately start making noise
again. The number of vocalizations over the rest of the day is
somewhat variable, but still reasonable.

In Figure 4, we have plotted three days of unstressed data
alongside three days of stressed data. It is very clear which
days (and even which times during the day) the birds were
stressed. A closer analysis of the experiment logs show that
the periods with a large number of vocalizations (> 200) cor-
respond almost exactly with the periods of increased temper-
ature. The raised temperature occurred approximately during
hours 10 to 12 on two of the plotted stressed days, and approx-
imately during hours 13 to 15 on the other plotted stressed
day. A “recovery period” after the stress condition is also vis-
ible.

By applying a threshold at 200 vocalizations in a 45-
minute period, we find that we can detect each of the stressful
situations the birds encountered within 20 to 30 minutes. Un-
fortunately, we can only verify the success of this method for
our admittedly few test cases; however, obtaining test audio
data for these situations is difficult due to animal welfare
regulations.

5. CONCLUSION

By using a spectral oversubtraction method in combination
with a vocalization detection algorithm, we have shown that
we can effectively detect stressful conditions in broiler grow-
out houses.

Our spectral oversubtraction method, operating under the
assumption that individual vocalizations will not significantly
affect a moving average of STFT frames (which is used as
a noise estimate), removes almost all interfering noise from
the data. However, this method is not likely to be applicable
to many other situations; it is specialized to this particular
application.

The vocalization detection algorithm, which counts indi-
vidual vocalizations, provides a clear feature which can reli-
ably be used to classify the existence of a stressor condition.
In addition, the algorithm is very simple and could be imple-
mented in real-time. This algorithm could be coupled with
the spectral oversubtraction method (since that is also STFT-
based analysis) and implemented on a low-power real-time
system, allowing industry grow-out houses to have a cheap
yet reliable monitor on their flocks.

Unfortunately, since we were only able to monitor and
stress one flock, more data should be gathered, in different
settings. Most grow-out houses are similar, but it should be
verified that the techniques that worked in this house gener-
alize to other settings. More instances of stressors are also
required to verify that the birds will always respond in the
same way (more vocalizations). However, we expect that the
methods described in this paper will also be effective in other
grow-out house situations.

This work also opens up a possibility of hatchery moni-
toring, which is a similar situation. The objective is to detect
when eggs start hatching; fan noise is also prevalent in this
setting. The noise of the hatching eggs (the birds tapping their



Fig. 4. Number of vocalizations for both stressed and unstressed days.

beaks against the shell) is very short-term, meaning that the
filtering method described above is likely to be effective. In-
vestigation into this topic has already begun, and results are
forthcoming.
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