
Fast approximate furthest neighbors with
data-dependent candidate selection

Ryan R. Curtin and Andrew B. Gardner

Center for Advanced Machine Learning
Symantec Corporation

Atlanta, GA 30338, USA.
ryan@ratml.org, Andrew Gardner@symantec.com

Abstract. We present a novel strategy for approximate furthest neigh-
bor search that selects a candidate set using the data distribution. This
strategy leads to an algorithm, which we call DrusillaSelect, that is
able to outperform existing approximate furthest neighbor strategies.
Our strategy is motivated by an empirical study of the behavior of
the furthest neighbor search problem, which lends intuition for where
our algorithm is most useful. We also present a variant of the algo-
rithm that gives an absolute approximation guarantee; under some as-
sumptions, the guaranteed approximation can be achieved in provably
less time than brute-force search.. Performance studies indicate that
DrusillaSelect can achieve comparable levels of approximation to other
algorithms while giving up to an order of magnitude speedup. An imple-
mentation is available in the mlpack machine learning library (found at
http://www.mlpack.org).

1 Introduction

We concern ourselves with the problem of furthest neighbor search, which is the
logical opposite of the well-known problem of nearest neighbor search. Instead
of finding the nearest neighbor of a query point, our goal is to find the furthest
neighbor. This problem has applications in recommender systems, where furthest
neighbors can increase the diversity of recommendations [1, 2]. Furthest neighbor
search is also a component in some nonlinear dimensionality reduction algorithms
[3], complete linkage clustering [4, 5] and other clustering applications [6]. Thus,
being able to quickly return furthest neighbors is a significant practical concern
for many applications.

However, it is in general not feasible to return exact furthest neighbors from
large sets of points. Although this is possible with Voronoi diagrams in 2 or 3
dimensions [7], and with single-tree or dual-tree algorithms in higher dimensions
[8], these algorithms tend to have long running times in practice. Therefore,
approximate algorithms are often considered acceptable in most applications.

For approximate neighbor search algorithms, hashing strategies are a pop-
ular option [9–11]. Typically hashing has been applied to the problem of near-
est neighbor search, but recently there has been interest in applying hashing



techniques to furthest neighbor search [12, 13]. In general, these techniques are
based on random projections, where random unit vectors are chosen as projec-
tion bases. This allows probabilistic error guarantees, but the entirely random
approach does not use the structure of the dataset.

In this paper, we first consider the structure of the furthest neighbors problem
and then conclude that a data-dependent approach can be used to select a small
set of candidate points that work for all query points. This allows us to develop:

– DrusillaSelect, an algorithm that selects candidate points based on the
data distribution and outperforms other approximate furthest neighbors ap-
proaches in practice.

– A modified version of DrusillaSelect which satisfies rigorous approxima-
tion guarantees, and under some assumptions will provably outperform the
brute-force approach at search time. However, it is not likely to be useful in
practice.

Our empirical results in Section 7 show that the DrusillaSelect algo-
rithm demonstrably outperforms existing solutions for approximate k-furthest-
neighbor search.

2 Notation and formal problem description

The problem of furthest neighbor search is easily formalized. Given a set of
reference points Sr ∈ Rn×d, a set of query points Sq ∈ Rm×d, and a distance
metric d(·, ·), the problem is to find, for each query point pq ∈ Sq,

argmaxpr∈Sr
d(pq, pr). (1)

A trivial way to solve this algorithm is by brute-force: for each query point,
loop over all reference points and find the furthest one. But this algorithm takes
O(nm) time, and does not scale well to large Sr or Sq. In this paper, we will
consider the ε-approximate form of the furthest neighbor search problem.

Given a set of reference points Sr ∈ Rn×d, a set of query points Sq ∈
Rm×d, an approximation parameter ε ≥ 0, and a distance metric d(·, ·), the
ε-approximate furthest neighbor problem is to find a furthest neighbor candi-
date p̂fn for each query point pq ∈ Sq such that

d(pq, pfn)

d(pq, p̂fn)
< 1 + ε (2)

where pfn is the true furthest neighbor of pq in Sr. When ε = 0, this reduces to
the exact furthest neighbor search problem. This form of approximation is also
known as relative-value approximation.

3 Related work

There have been a number of improvements over the naive brute-force search
algorithm suggested above. Exact techniques based on Voronoi diagrams can
solve the furthest neighbor problem. In 1981, Toussaint and Bhattacharya pro-
posed building a furthest-point Voronoi diagram to solve the furthest neighbors



problem in O(m log n) time [14]. But in high dimensions, Voronoi diagrams are
not useful because of their exponential memory dependence on the dimension.

Another approach to exact furthest neighbor search uses space trees [8]. A
tree is built on the reference points Sr, and nodes that cannot contain the fur-
thest neighbor of a given query point are pruned. This is essentially equivalent to
many algorithms for nearest neighbor search, such as the algorithm for nearest
neighbor search with cover trees [15], but with inequalities reversed (i.e., prune
nearby nodes, not faraway nodes). This can be done in a dual-tree setting, by
also building a tree on the query points Sq. Dual-tree nearest neighbor search
has been proven to scale linearly in the size of the reference set under some con-
ditions [16], but no similar bound has been shown for dual-tree furthest neighbor
search. It would be reasonable to expect similar empirical scaling. Unfortunately,
tree-based approaches tend to perform poorly in high dimensions, and the tree
construction time can cause the algorithm to be undesirably slow.

Further runtime acceleration can be achieved if approximation is allowed. It
is easy to modify the single-tree and dual-tree algorithms to support this, in
the manner suggested by Curtin for nearest neighbor search [17]. Although this
is shown to accelerate nearest neighbor search runtime by a significant amount
(depending on the allowed approximation), the setup time of building the trees
can still dominate. A similar approach to this strategy is the fair split tree,
designed by Bespamyatnikh [18]. But this approach suffers from the same issues.

The fastest known algorithms for approximate furthest neighbor search are
hashing algorithms. Indyk [13] proposed a hashing algorithm based on random
projections that is able to solve a slightly different problem: this algorithm is able
to determine (approximately) whether or not there exists a point in Sr farther
away than a given distance. This can be reduced to the approximate furthest
neighbor problem we are interested in, but this is complex to implement.

Pagh et al. [12] refine this approach to directly solve the approximate furthest
neighbor problem; this improves on the runtime of Indyk’s algorithm and is easy
to implement. This algorithm, called QDAFN (‘query-dependent approximate
furthest neighbor’), has a guaranteed success probability. A user must specify
the number of projections and the number of points stored for each projection;
usually, this number is generally low. But in very high-dimensional settings, the
random projections can fail to capture important outlying points. This motivates
us to investigate the point distribution as a path towards a better algorithm.

4 Furthest neighbor point distribution

The furthest neighbor problem is quite different from the nearest neighbor prob-
lem, which has received significantly more attention [19–22, 9, 8, 17]. This dif-
ference is perhaps somewhat counterintuitive, given that the furthest neighbor
problem is simply an argmax over Sr, not an argmin. But this change causes the
problem to have surprisingly different structure with respect to the results.

As a first observation of the differences between the two problems, consider
that for any set Sr, the furthest neighbor of every point can be made to be a
single point simply by adding a single point sufficiently far from every other point



(a) cloud dataset (10x2048). (b) ozone dataset (72x2534).

(c) phy dataset (78x150000). (d) covertype dataset (55x581012).

Fig. 1. Average rank vs. norm for a handful of datasets. Observe that a large norm is
correlated with a low rank.

in Sr. There is no analog to this in the nearest neighbor search problem. Indeed,
it is often true that for a furthest neighbor query with many query points, the
results may contain the same reference point. This is easily demonstrated.

Define the rank of a reference point pr for some query point pq as the position
of pr in the ordered list of distances from pq. That is, if the rank of pr for some
query point pq is k, then pr is the k-furthest neighbor from pq.

We can obtain insight into the behavior of furthest neighbor queries by ob-
serving the average rank of points on some example datasets from the UCI
dataset repository [23]. Figure 1 contains scatterplots displaying the average
rank of a reference point versus the mean-centered norm of the reference point
for the all-furthest-neighbors problem (that is, each point in the reference set is
used as a query point).

Figure 1 shows that there is a clear and unmistakable correlation between
the norm of a point and its average rank for the all-k-furthest-neighbor problem.
For the ozone dataset, we can see that there are only a few points with high
norm, and all of these have much lower average rank than the rest of the points.

This correlation is related to the phenomenon of hubness in the nearest neigh-
bor search literature [24]; specifically, points with low average rank may be seen
to be related to anti-hubs and distance-based outliers. In higher dimensions,
more anti-hubs may be expected [25]—thus we may conclude that high-norm
points (which have low average rank and are related to anti-hubs) are increas-
ingly important in high-dimensional settings. Therefore, an effective furthest
neighbors algorithm for high-dimensional data should take this structure into
account: high-norm points are more important than low-norm points.



5 The algorithm: DrusillaSelect

Our collective observations motivate an algorithm for approximate furthest neigh-
bor search, which we introduce as DrusillaSelect in Algorithm 1. The algo-
rithm constructs a small collection of points by repeatedly choosing projection
bases from the data points with largest norm.1 Then, the other points in the
dataset are projected onto the basis and are selected if they are good candidates.
After this collection is built, each query point is simply compared with all points
in the collection in order to determine a good furthest neighbor candidate.

DrusillaSelect depends on two parameters: l, the number of projections,
and m, the number of points taken for each projection. Empirically we observe
that values in the range of l ∈ [2, 15] and m ∈ [1, 5] produce acceptably good
approximations for most datasets, with approximation levels between ε = 0.01
and ε = 1.1.

1 This is where the algorithm gets its name; the first author’s cat displays the same
behavior when selecting a food bowl to eat from.

Algorithm 1 DrusillaSelect: fast approximate k-furthest neighbor search.

1: Input: reference set Sr, query set Sq, number of neighbors k, number of projections
l, set size m

2: Output: array of furthest neighbors N []

3: {Pre-processing: mean-center data.}
4: m← 1

n

∑
pr∈Sr

pr
5: Sr ← Sr −m; Sq ← Sq −m

6: {Pre-processing: build DrusillaSelect sets.}
7: for all pr ∈ Sr do n[pr]← ‖pr‖ {Initialize norms of points.}
8: for all i ∈ {0, 1, . . . , l} do
9: pi ← argmaxpr∈Sr

n[pr] {Take next point with largest norm.}
10: vi ← pi/‖pi‖

11: {Calculate distortions and offsets.}
12: for all pr ∈ Sr such that n[pr] 6= 0 do
13: O[pr]← pTr vi
14: D[pr]← ‖pr −O[pr]vi‖
15: s[pr]← |O[pr]| −D[pr]

16: {Collect points that are well-represented by pi.}
17: Ri ← points corresponding to largest m elements of s[·]
18: for all pr ∈ Ri do n[pr] = 0 {Mark point as used.}
19: for all pr ∈ Sr such that atan(D[pr]/O[pr]) ≥ π/8 do
20: n[pr] = 0 {Mark point as used.}

21: {Search for furthest neighbors.}
22: for all pq ∈ Sq do
23: for all Ri ∈ R do
24: for all pr ∈ Ri do
25: if d(pq, pr) > Nk[pq] then
26: update results N [pq] for pq with pr



vi

pj

d
isto

rtio
n

offset

Fig. 2. Distortion and offset for pj with base vector vi.

The primary intuition of the algorithm is that we want to collect points in
the sets Ri that are likely to be furthest neighbors of any query point. We know
from our earlier experiments that points with high mean-centered norms are
likely to be good furthest neighbor candidates. Thus, we start by selecting the
highest-norm mean-centered point pi as the primary point of the set Ri, and
collect m points that are not too distorted by a projection onto the unit vector
vi which points in the direction of pi. Any points that are not too distorted
by this projection but not collected are ignored for future projections (line 18).
In addition, points that lie within a cone pointing in the direction of vi are
also ignored (line 20). The value of π/8 was chosen for its decent empirical
performance, but it would be reasonable to select different values.

The words “not too distorted” deserve some elaboration: we wish to find
high-norm points that are well-represented by pi, but we do not wish to find
high-norm points that are not well-represented by pi. Ideally, those points will
be selected as the primary point of another set Rj . Therefore, for each point pj ,
we calculate the offset O[pj ]; this is the norm of the projection of pj onto vi.
Similarly, we calculate the distortion D[pj ]. Figure 2 displays a simple example
of offset and distortion.

Our goal is to balance two objectives in selecting points for Ri:

– Select high-norm points.
– Select points that are well-represented by vi.

The solution we have used here is to construct a score s[pj ] which is just the
distortion subtracted from the offset (see line 15). Figure 3 displays an example
vi with 20 points; each point is indexed by its position in the ordered score set
s[·]. In the context of DrusillaSelect, if we took m = 6 (so, 6 points were
selected for each vi), then vi and the five red points p1 through p5 would be
selected to make up the set Ri. Then, p7 would be chosen as vi+1 because it is
the point with largest norm that has not been selected (line 9).

Once we have constructed the sets Ri, then our actual search is a simple
brute-force search over every point contained in each set Ri. Because the total
number of points in R is only lm, brute-force scan is sufficient.

DrusillaSelect has a somewhat similar structure to the QDAFN algorithm
[12]; except for three important differences: (i) the vectors vi are drawn using



vi

p7

p1

p2

p12

p9

p13

p10 p6

p5

p4

p11

p17

p18

p14

p8

p3

p19

p16

p20

p15

Fig. 3. Example scores for a set of points; red: highest scores, blue: lowest scores.

properties of the reference set, (ii) there is no priority queue structure when
scanning the sets, and (iii) the projection bases chosen cannot be too similar.
Although DrusillaSelect can involve more setup time, our empirical simula-
tions show it is able to provide better results with fewer sets and points in each
sets, resulting in better overall performance for a given level of approximation.

Table 1 gives a comparison of the runtimes of different approximate furthest
neighbor algorithms. Note that DrusillaSelect and QDAFN have the same
asymptotic setup time for the same l and m; but in practice, the overhead of
DrusillaSelect setup time is higher than QDAFN for equivalent l and m. But
again it must be noted that to provide the same results accuracy, l and m may
generally be set smaller with DrusillaSelect than QDAFN.

Algorithm Setup time Search time

DrusillaHash O(ld|Sr| log |Sr|) O(|Sq|dlm)
QDAFN [12] O(ld|Sr| log |Sr|) O(|Sq|d(l log l +m log l))
Indyk [13] O(ld|Sr| log |Sr|) O(l|Sq|(d+ log |Sr|) log d log log d
Brute-force none O(|Sq||Sr|)
Table 1. Runtimes of approximate furthest neighbor algorithms.

6 Guaranteed approximation

Next, we wish to consider the problem of an absolute approximation guarantee:
in what situations can we ensure that the furthest neighbor returned is an ε-
approximate furthest neighbor?

It turns out that this is possible with a modification of DrusillaSelect,
given in Algorithm 2 as GuaranteedDrusillaSelect. This algorithm, instead
of taking a number of projections l, takes an acceptable approximation level ε.
The algorithm uses a utility quantity, δ = ε/(6 + 3ε).

The algorithm is roughly the same as DrusillaSelect, except for that more
sets are added until all points with norm greater than δmaxpr∈Sr

‖pr‖ are con-



Algorithm 2 GuaranteedDrusillaSelect: guaranteed approximate k-furthest
neighbor search.

1: Input: reference set Sr, query set Sq, number of neighbors k, acceptable approxi-
mation level ε, set size m

2: Output: array of furthest neighbors N []

3: {Pre-processing: mean-center data.}
4: m← 1

n

∑
pr∈Sr

pr; Sr ← Sr −m; Sq ← Sq −m

5: {Pre-processing: build GuaranteedDrusillaSelect sets.}
6: for all pr ∈ Sr do n[pr]← ‖pr‖ {Initialize norms of points.}
7: δ ← ε

6+3ε

8: while maxpr∈Sr n[pr] > δmaxpr∈Sr ‖pr‖ do
9: pi ← argmaxpr∈Sr

n[pr] {Take next point with largest norm.}
10: vi ← pi/‖pi‖

11: {Calculate distortions and offsets.}
12: for all pr ∈ Sr such that n[pr] 6= 0 do
13: O[pr]← pTr vi
14: D[pr]← ‖pr −O[pr]vi‖
15: s[pr]← |O[pr]| −D[pr]

16: {Collect points that are well-represented by pi.}
17: Ri ← points corresponding to largest m elements of s[·]
18: for all pr ∈ Ri do n[pr] = 0 {Mark point as used.}

19: {Set shrug point (if we can).}
20: psh ← ∅
21: if there is any point such that n[pr] 6= 0 then
22: psh ← some point such that n[pr] 6= 0

23: {Search for furthest neighbors.}
24: for all pq ∈ Sq do
25: for all Ri ∈ R do
26: for all pr ∈ Ri do
27: if d(pq, pr) > Nk[pq] then
28: update results N [pq] for pq with pr
29: if psh 6= ∅ and d(pq, psh) > Nk[pq] then
30: update results N [pq] for pq with psh

tained in some set Ri, and an extra point called the shrug point is held. The
shrug point is set to be any point within the small zero-centered ball of radius
δmaxpr∈Sr

‖pr‖. This is needed to catch situations where pq is close to every
point in some Ri, and serves to provide a “good enough” result to satisfy the
approximation guarantee.

Because GuaranteedDrusillaSelect collects potentially huge numbers of
sets that may contain most of the points in Sr, the algorithm is primarily of
theoretical interest. Although the algorithm will outperform brute-force search
as long as the sets do not contain nearly all of the points in Sr, it is not likely
to be practical for large Sr.

Now we may present our theoretical result. First, we need a utility lemma.



Lemma 1. Given a mean-centered set Sr and a query point pq with true furthest
neighbor pfn, if ‖pq‖ ≤ 1

3 maxpr∈Sr
‖pr‖, then ‖pfn‖ ≥ 1

3 maxpr∈Sr
‖pr‖.

Proof. This is a simple proof by contradiction: suppose ‖pfn‖ < 1
3 maxpr∈Sr

‖pr‖.
Then, the maximum possible distance between pq and pfn is bounded above as
d(pq, pfn) < 2

3 maxpr∈Sr
‖pr‖. But the minimum possible distance between pq

and the largest point in Sr is bounded below as

d(pq, argmax
pr∈Sr

‖pr‖) ≥ max
pr∈Sr

‖pr‖ −
1

3
max
pr∈Sr

‖pr‖ =
2

3
max
pr∈Sr

‖pr‖. (3)

This means that the largest point in Sr is a further neighbor than pfn, which
is a contradiction. ut

We may now prove the main result.

Theorem 1 Given a set Sr and an approximation parameter ε < 1 and any set
size m > 0, GuaranteedDrusillaSelect will return, for each query point pq, a
furthest neighbor p̂fn such that

d(pq, pfn)

d(pq, p̂fn)
< 1 + ε (4)

where pfn is the true furthest neighbor of pq in Sr. That is, p̂fn is an ε-approximate
furthest neighbor of pq.

Proof. We know from Lemma 1 that if the norm of pq is less than or equal to
1/3 of the maximum norm of any point in Sr, then the true furthest neighbor
must have norm greater than or equal to 1/3 of the maximum norm of any point
in Sr. Since δ is always less than 1/3 in Algorithm 2, we know that any such
point will be contained in some set Ri, and thus the algorithm will return the
exact furthest neighbor in this case.

The only other case to consider, then, is when the norm of the query point
is large: ‖pq‖ > 1

3 maxpr∈Sr
‖pr‖. But we already know due to the way the

algorithm works, that if ‖pfn‖ ≥ δmaxpr∈Sr
‖pr‖, then pfn will be contained

in some set Ri and the algorithm will return pfn, satisfying the approximation
guarantee.

But what about when ‖pfn‖ is smaller? We must consider the case where
‖pfn‖ < δmaxpr∈Sr ‖pr‖. Here we may place an upper bound on the distance
between the query point and its furthest neighbor:

d(pq, pfn) ≤ ‖pq‖+ ‖pfn‖ < ‖pq‖+ δ max
pr∈Sr

‖pr‖. (5)

We may also place a lower bound on the distance between the query point and
its returned furthest neighbor using the shrug point psh. The distance between
pq and psh is easily lower bounded: d(pq, psh) ≥ ‖pq‖ − δmaxpr∈Sr ‖pr‖ > 0.
This is also a lower bound on d(pq, p̂fn). We may combine these bounds:

d(pq, pfn)

d(pq, p̂fn)
<
‖pq‖+ δmaxpr∈Sr ‖pr‖
‖pq‖ − δmaxpr∈Sr

‖pr‖
. (6)



Now, define the convenience quantity α as

α =
maxpr∈Sr

‖pr‖
‖pq‖

. (7)

Because of our assumptions on pq, we know that α < 3. Using these inequal-
ities, we may further simplify Equation 6.

d(pq, pfn)

d(pq, p̂fn)
<

1 + δα

1− δα
(8)

= 1 +
2δα

1− δα
(9)

< 1 +
6δ

1− 3δ
(10)

and because δ = ε
6+3ε , Equation 10 simplifies to the result,

d(pq, pfn)

d(pq, p̂fn)
< 1 + ε (11)

and therefore the theorem holds. ut

Note that the theorem holds if we set δ to the simpler quantity of ε/9; but
the quantity (ε/(6 + 3ε)) provides a tighter bound.

Although GuaranteedDrusillaSelect does not guarantee better search time
than brute force under all conditions, it does in most conditions. As one ex-
ample, consider a large dataset where the norms of points in the centered
dataset are uniformly distributed. Some of these points will have norm less than
(ε/15) maxpr∈Sr ‖pr‖. These points (except the shrug point psh) will not be con-
sidered by the GuaranteedDrusillaSelect algorithm, and this means that the
GuaranteedDrusillaSelect algorithm will inspect fewer points at search time
than the brute-force algorithm.

Next, consider the extreme case, where there exists one outlier po with ex-
tremely large norm, such that the next largest point has norm smaller than
(ε/(6 + 3ε))‖po‖. Here, GuaranteedDrusillaSelect with m = 1 will only need
to inspect two points: the extreme outlier, and the shrug point psh.

On the other hand, there do exist cases where GuaranteedDrusillaSelect

gives no improvement over brute-force search, and every point must be in-
spected. If the dataset is such that all points have norm greater than (ε/(6 +
3ε)) maxpr∈Sr ‖pr‖, then the sets Ri will contain every single point in the dataset.

These theoretical results show that it is possible to give a guaranteed ε-
approximate furthest neighbor in less time than brute-force search, if the dis-
tribution of norms of Sr are not worst-case. But due to the algorithm’s storage
requirement, it is not likely to perform well in practice and so we do not inves-
tigate its empirical performance.



QDAFN params DrusillaSelect params
Dataset n d l m l m

cloud 2048 10 30 60 2 1
isolet 7797 617 40 40 2 1
gisette 12500 5000 40 40 2 2
corel 37749 32 5 5 2 1
p53 48192 5409 25 25 3 2
randu 100000 10 15 15 5 2
miniboone 130064 50 125 200 2 1
phy 150000 78 12 12 4 1
covertype 581012 55 15 20 6 2
pokerhand 1000000 10 15 50 50 8
susy 5000000 18 18 18 2 2
higgs 11000000 28 32 32 2 2

Table 2. Datasets and parameters.

Dataset brute-force dual-tree QDAFN DrusillaSelect

cloud 0.039s 0.040s 0.011s 0.001s
isolet 6.754s 7.706s 0.165s 0.041s
gisette 141.923s 141.963s 1.875s 0.549s
corel 10.292s 1.030s 0.021s 0.021s
p53 2258.331s 270.341s 3.475s 2.734s
randu 42.392s 28.004s 0.316s 0.0619s
miniboone 187.262s 4.105s 2.165s 0.104s
phy 370.061s 58.720s 0.203s 0.189s
covertype 4077.922s 144.993s 1.244s 0.203s
randu – 16.715s 0.069s 0.043s
pokerhand – 852.001s 11.749s 8.035s
susy – 88.295s 21.678s 2.4467s
higgs – 425.053s 56.094s 12.694s

Table 3. Runtimes for ε = 0.05-approximate furthest neighbor search.

7 Experiments

Next, we investigate the empirical performance of the DrusillaSelect algo-
rithm, comparing with brute-force search, QDAFN [12], and dual-tree exact
furthest neighbor search as described by Curtin et al. [8]. Note that both brute-
force search and the dual-tree algorithm return exact furthest neighbors; QDAFN
and DrusillaSelect return approximations. Each implementation is either from
mlpack [26] or is built using mlpack. We test the algorithms on a variety of
datasets from the UCI dataset repository and randu, which is uniformly ran-
domly distributed. These datasets and their properties are given in Table 2.

First, we compare runtimes across all four algorithms. The approximate algo-
rithms are tuned to return, on average across the query set, ε = 0.05-approximate
furthest neighbors (using the parameters from Table 2). Table 3 shows the aver-
age runtimes of each of the four algorithms on each dataset across ten trials with
the dataset randomly split into 30% query set, 70% reference set. I/O times are
not included; the runtime only includes the time for the search itself, including
preprocessing time (building hash tables, sets, or trees).



(a) covertype dataset. (b) gisette dataset.

Fig. 4. Maximum error for QDAFN and DrusillaSelect as a function of runtime.

The DrusillaSelect algorithm provides average ε = 0.05-approximate fur-
thest neighbors up to an order of magnitude faster than any other competing
algorithm, and it also needs to inspect fewer points to return an accurate approx-
imate furthest neighbor (with the exception of the pokerhand dataset). In many
cases, DrusillaSelect only needs to inspect fewer than 10 points to find good
furthest neighbor approximations, whereas QDAFN must inspect 50 or more.

Our datasets have two extreme examples: the miniboone dataset, where the
data lies on a low-dimensional manifold, and the randu dataset.

For the miniboone dataset, DrusillaSelect is able to easily recover only
four points that provide average 1.05-approximate furthest neighbors. But be-
cause QDAFN chooses random projection bases, it takes very many to have a
high probability of recovering good furthest neighbors. In our experiments, we
were not able to achieve good approximation reliably until using as many as 125
projection bases. This effect was also observed with the covertype dataset.

DrusillaSelect also outperforms other approaches on the randu dataset,
despite there being no structure for DrusillaSelect to exploit. But the algo-
rithm is still able to outperform others; this is because the algorithm specifically
ensures that projection bases are not too similar (see lines 18–20).

Another important property of DrusillaSelect is that it gives a small max-
imum error compared to QDAFN. Figure 4 shows the maximum error of each
approach as the number of points scanned increase on the covertype dataset.
For QDAFN, we have swept with l = m from l = 20 to l = 250, and for
DrusillaSelect, we have set m = l/3 and swept l from 6 to 60.

Our experimental results have shown that DrusillaSelect gives excellent
approximation while only needing to scan few points. Whereas QDAFN seems
to perform poorly in high-dimensional settings where the data lie on a low-
dimensional manifold (because projection bases are random), DrusillaSelect
effectively captures the low-dimensional structure with few projection bases.

8 Conclusion

We have proposed an algorithm, DrusillaSelect, that builds a candidate set for
approximate furthest neighbor search by using the properties of the dataset. This
algorithm design is motivated by our empirical analysis of the structure of the
approximate furthest neighbor search problem, and the algorithm performs quite
compellingly in practice. It scales better with dataset size than other techniques.



We have also proposed a variant, GuaranteedDrusillaSelect, which is able
to give an absolute approximation guarantee. Under some assumptions, this
algorithm will provably outperform the brute-force approach at search time.
This is a benefit that no other furthest neighbor search scheme is able to provide.
However, this variant is not likely to be useful in practice due to the large number
of points it must search to satisfy the guarantee.

Interesting future directions for this line of research may include combining
a random projection approach with the approach outlined here. It would also
be possible to generalize our approach to arbitrary distance metrics, including
those where the points lie in an unrepresentable space. This could be done using
techniques similar to some that have been used for max-kernel search [27, 28].
Lastly, we have focused on high-norm points as ‘important’; but a study con-
necting hubness (or anti-hubness) to the average furthest-neighbor rank would
be enlightening and may potentially guide future improvements to this approach.

References

1. A. Said, B. Kille, B.J. Jain, and S. Albayrak. Increasing diversity through furthest
neighbor-based recommendation. Proceedings of the Fifth International Conference
on Web Search and Data Mining (WSDM 2012), 12, 2012.

2. A. Said, B. Fields, B.J. Jain, and S. Albayrak. User-centric evaluation of a k-
furthest neighbor collaborative filtering recommender algorithm. In Proceedings of
the 2013 conference on Computer Supported Cooperative Work, pages 1399–1408.
ACM, 2013.

3. N. Vasiloglou, A.G. Gray, and D.V. Anderson. Scalable semidefinite manifold
learning. In Proceedings of the 2008 IEEE Workshop on Machine Learning for
Signal Processing, 2008 (MLSP 2008), pages 368–373. IEEE, 2008.

4. D. Defays. An efficient algorithm for a complete link method. The Computer
Journal, 20(4):364–366, 1977.

5. P.D. Schloss, S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister,
R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, J.W. Sahl, B. Stres, G.G.
Thallinger, D.J. Van Horn, and C.F. Weber. Introducing mothur: open-source,
platform-independent, community-supported software for describing and compar-
ing microbial communities. Applied and Environmental Microbiology, 75(23):7537–
7541, 2009.

6. C.J. Veenman, M.J.T. Reinders, and E. Backer. A maximum variance cluster
algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(9):1273–1280, 2002.

7. O. Cheong, C.-S. Shin, and A. Vigneron. Computing farthest neighbors on a convex
polytope. Theoretical Computer Science, 296(1):47–58, 2003.

8. R.R. Curtin, W.B. March, P. Ram, D.V. Anderson, A.G. Gray, and C.L. Isbell Jr.
Tree-independent dual-tree algorithms. In Proceedings of the 30th International
Conference on Machine Learning (ICML ’13), 2013.

9. M. Datar, N. Immorlica, P. Indyk, and V.S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the Twentieth Annual
Symposium on Computational Geometry (SoCG ’04), pages 253–262. ACM, 2004.

10. P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing (STOC ’98), pages 604–613. ACM, 1998.



11. A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’06), pages 459–468. IEEE, 2006.

12. R. Pagh, F. Silvestri, J. Sivertsen, and M. Skala. Approximate furthest neighbor
in high dimensions. In Similarity Search and Applications, pages 3–14. Springer,
2015.

13. P. Indyk. Better algorithms for high-dimensional proximity problems via asymmet-
ric embeddings. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2003), pages 539–545. Society for Industrial and
Applied Mathematics, 2003.

14. G.T. Toussaint and B.K. Bhattacharya. On geometric algorithms that use the
furthest-point voronoi diagram. School of Computer Science, McGill University,
Tech. Rept. No. 81.3, 1981.

15. A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor.
In Proceedings of the 23rd International Conference on Machine Learning (ICML
’06), pages 97–104. ACM, 2006.

16. R.R. Curtin, D. Lee, W.B. March, and P. Ram. Plug-and-play dual-tree algorithm
runtime analysis. Journal of Machine Learning Research, 16:3269–3297, 2015.

17. R.R. Curtin. Faster dual-tree traversal for nearest neighbor search. In Similarity
Search and Applications, pages 77–89. Springer, 2015.

18. S. Bespamyatnikh. Dynamic algorithms for approximate neighbor searching.
In Proceedings of the 8th Canadian Conference on Computational Geometry
(CCCG’96), pages 252–257, 1996.

19. J.L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

20. S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. Journal
of the ACM (JACM), 45(6):891–923, 1998.

21. A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high dimensions via
hashing. In Proceedings of the Twenty-Fifth International Conference on Very
Large Data Bases (VLDB ’99), volume 99, pages 518–529, 1999.

22. A.G. Gray and A.W. Moore. ‘N-Body’ problems in statistical learning. In Advances
in Neural Information Processing Systems 14 (NIPS 2001), volume 4, pages 521–
527, 2001.

23. M. Lichman. UCI Machine Learning Repository, http://archive.ics.uci.edu/
ml, University of California Irvine, School of Information and Computer Sciences,
2013.

24. M. Radovanoić, A. Nanopoulos, and C. Ivanović. Hubs in space: Popular near-
est neighbors in high-dimensional data. Journal of Machine Learning Research,
11(Sep):2487–2531, 2010.

25. N. Tomasev, M. Radovanović, D. Mladenic, and M. Ivanović. The role of hubness
in clustering high-dimensional data. IEEE Transactions on Knowledge and Data
Engineering, 26(3):739–751, 2014.

26. R.R. Curtin, J.R. Cline, N.P. Slagle, W.B. March, P. Ram, N.A. Mehta, and A.G.
Gray. mlpack: A scalable C++ machine learning library. The Journal of Machine
Learning Research, 14(1):801–805, 2013.

27. R.R. Curtin, P. Ram, and A.G. Gray. Fast exact max-kernel search. In Proceedings
of the 2013 SIAM International Conference on Data Mining (SDM ’13), pages 1–9.
SIAM, 2013.

28. R.R. Curtin and P. Ram. Dual-tree fast exact max-kernel search. Statistical Anal-
ysis and Data Mining, 7(4):229–253, 2014.


