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ABSTRACT

Motivated by fundamental applications in databases and relational
machine learning, we formulate and study the problem of answer-
ing functional aggregate queries (FAQ) in which some of the input
factors are defined by a collection of additive inequalities between
variables. We refer to these queries as FAQ-AI for short.

To answer FAQ-AI in the Boolean semiring, we define relaxed

tree decompositions and relaxed submodular and fractional hyper-
tree width parameters.We show that an extension of the InsideOut
algorithm using Chazelle’s geometric data structure for solving the
semigroup range search problem can answer Boolean FAQ-AI in
time given by these new width parameters. This new algorithm
achieves lower complexity than known solutions for FAQ-AI. It
also recovers some known results in database query answering.

Our second contribution is a relaxation of the set of polyma-
troids that gives rise to the counting version of the submodular
width, denoted by #subw. This new width is sandwiched between
the submodular and the fractional hypertree widths. Any FAQ and
FAQ-AI over one semiring can be answered in time proportional
to #subw and respectively to the relaxed version of #subw.

We present three applications of our FAQ-AI framework to re-
lational machine learning: k-means clustering, training linear sup-
port vector machines, and training models using non-polynomial
loss. These optimization problems can be solved over a database
asymptotically faster than computing the join of the database rela-
tions.

1 INTRODUCTION
We consider the problemof computing functional aggregate queries
with inequality joins, or FAQ-AI queries for short. This is a funda-
mental computational problem that goes beyond databases: core
computation for supervised and unsupervised machine learning
can be formulated in FAQ-AI.

Inequalities occur naturally in scenarios involving temporal and
spatial relationships between objects in databases. In a retail sce-
nario (e.g., TPC-H), we would like to compute the revenue gener-
ated by a customer’s orders whose dates closely precede the ship
dates of their lineitems. In streaming scenarios, we would like to
detect patterns of events whose time stamps follow a particular or-
der [12]. In spatial data management scenarios, we would like to
retrieve objects whose coordinates are within a multi-dimensional
range or in close proximity of other objects [25]. The evaluation
of Core XPath queries over XML documents amounts to the eval-
uation of a special class of conjunctive queries with inequalities
expressing tree relationships in the pre/post plane [16].

1.1 Motivating examples

A key insight of this paper is that the efficient computation of in-
equality joins can reduce the computational complexity of super-
vised and unsupervised machine learning.

Example 1.1. The k-means algorithm divides the input dataset
G into k clusters of similar data points [20]. Each cluster Gi has
a mean µi ∈ Rn , which is chosen according to the following opti-
mization (similarity is defined here with respect to the ℓ2 norm):

min
(G1 ,... ,Gk )

k∑
i=1

∑
x ∈Gi

‖x − µi ‖22 . (1)

Let µi ,ℓ be the ℓ’th component of mean vector µi . For a data
point x ∈ G, the function ci j computes the difference between the
squares of the ℓ2-distances from x to µi and from x to µ j :

ci j (x) =
∑
ℓ∈[n]
[µ2i ,ℓ − 2xℓ (µi ,ℓ + µ j ,ℓ ) − µ

2
j ,ℓ ].

A data point x ∈ G is closest to mean µi from the set of k means
iff ∀j ∈ [k] : ci j (x) ≤ 0.

To compute the mean vector µi , we need to compute the sum
of values for each dimension ℓ ∈ [n] over Gi :

∑
x ∈Gi

xℓ . If the
datasetG is the join of database relations (Rp )p ∈[m] over schemas

Sp ⊆ [n],∀p ∈ [m], we can formulate this sum computation as a
datalog-like query with aggregates [17]:

Q
(i ,ℓ)
1

(∑
xℓ

)
← ©­«

∧
p ∈[m]

Rp (xSp )
ª®
¬
∧ ©­«

∧
j∈[k]

ci j (x) ≤ 0
ª®
¬
.

Section 4 gives further queries necessary to compute themeans. As
we show in this paper, such queries with aggregates and inequali-
ties can be computed asymptotically faster than the join defining
G. �

Simple queries with inequalities can already show the limita-
tions of current evaluation techniques, as highlighted next.

Example 1.2. State-of-the-art techniques take timeO(N 2) to com-
pute the following query over relations of size at most N :

Q2() ← R(a,b) ∧ S(b ,c) ∧T (c ,d) ∧ a ≤ d ,

Example 3.9 (3.19) shows how to computeQ2 (its counting version)
in time O(N 1.5) using the techniques introduced in this paper. �
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1.2 The FAQ-AI problem

One way to answer the above queries is to view them as functional
aggregate queries (FAQ) [4] formulated in sum-product form over
(potentially many) semirings. We therefore briefly introduce FAQ
over a single semiring.

First we establish notation. For any positive integer n, let V =
[n]. For i ∈ V , let Xi denote a variable/attribute, and xi denote a
value in the discrete domainDom(Xi ) ofXi . For anyK ⊆ V, define
XK = (Xi )i ∈K , xK = (xi )i ∈K ∈

∏
i ∈K Dom(Xi ). That is, XK is a

tuple of variables and xK is a tuple of values for these variables.
Let a semiring (D, ⊕, ⊗, 0, 1) and a multi1-hypergraph H =

(V = [n],E). To each edge K ∈ E we associate a function RK :∏
v ∈K Dom(Xi ) → D called factor.2 A (single-semiring) FAQ query

with free variables F ⊆ V has the form:

Q(xF ) =
⊕

xV\F ∈
∏

i∈V\F Dom(Xi )

⊗
K ∈E

RK (xK ). (2)

Under theBoolean semiring ({true, false},∨,∧, false, true), the que-
ryQ in (2) becomes a conjunctive query: The factors RK represent
input relations, where RK (xK ) = true iff xK ∈ RK , with some nota-
tional overloading. For counting the number of tuples in the result
of a join query, we can use instead the sum-product semiring and
define an indicator function RK (xK ) = 1xK ∈RK for every input re-
lation RK . To aggregate over some input variable, say Xk , we can
designate an identity factor Rk (xk ) = xk .

It is known [4] that over an arbitrary semiring, the query (2)

can be answered in time O(N fhtw(Q ) · logN ), where fhtw denotes
the fractional hypertree width of the query and Q has no free vari-
ables [15]. IfQ does have free variables, fhtw-width becomes FAQ-
width instead [4]. Here N is the size of the largest factor RK . Over

the Boolean semiring, the time can be lowered to Õ(N subw(Q )) [6],
where subw is the submodular width [26] and Õ hides a polyloga-
rithmic factor in N .

Motivated by the examples in Section 1.1, we formulate a class
of FAQ queries called FAQ-AI: the hyperedge multiset E is parti-
tioned into two multisets E = Es ∪ Eℓ , where s stands for “skele-
ton” and ℓ stands for “ligament”. The input to our class of queries
consists of the following: (1) to each hyperedge K ∈ Es , there cor-
responds a function RK :

∏
i ∈K Dom(Xi ) → D, as in the FAQ

case; (2) to each hyperedge S ∈ Eℓ , there corresponds |S | func-
tions θSv : Dom(Xv ) → R, one for every variable v ∈ S . The query
we want to compute is the following:

Q(xF ) =
⊕
xV\F

©­
«
⊗
K ∈Es

RK (xK )
ª®
¬
⊗ ©­

«
⊗
S ∈Eℓ

1∑
v∈S θ

S
v (xv )≤0

ª®
¬
. (3)

The summation
⊕

is over tuples xV\F ∈
∏

i ∈V\F Dom(Xi ). The
notation 1A denotes the indicator function of the event A in the
semiring (D, ⊕, ⊗, 0, 1): 1A = 1 if A holds, and 0 otherwise. The

(uni-variate) functionsθSv can be user-defined functions, e.g., θS1 (x1) =
x21/2, or binary predicates with one key inDom(Xv ) and a numeric
value. The only requirement we impose is that, given x , the value

θSv (x) can be accessed/computed in Õ(1)-time.

1This means that E is a multiset.
2The naming is borrowed from graphical models literature, where FAQ has its root.

Note that if Eℓ = ∅, then we get back the FAQ formulation (2).
Thus, FAQ-AI can also be considered a super-class of FAQ queries,
i.e., FAQ and FAQ-AI are the same language.

Example 1.3. The queries from Section 1.1 are instances of (3):

Q
(i ,ℓ)
1 () =

⊕
x[n]

xℓ ⊗
©­
«
⊗
p ∈[m]

Rp (xSp )
ª®¬
⊗ ©­

«
⊗
j∈[k]

1ci j (x )≤0
ª®¬
, (4)

Q2() =
⊕
x[4]

R(x1,x2) ⊗ S(x2,x3) ⊗ T (x3,x4) ⊗ 1x1−x4≤0. (5)

Q1 is on the sum-product semiring. Q2 can be on any semiring:
Example 3.9 discusses the case of the Boolean semiring while Ex-
ample 3.19 discusses the sum-product semiring. �

1.3 Our contributions

To answer FAQ queries of the form (2), currently there are two
dominant width parameters: fractional hypertreewidth (fhtw [15])
and submodular width (subw [26]).3 It is known that subw ≤ fhtw

for any query, and in the Boolean semiring we can answer (2) in

Õ(N subw)-time [6, 26]. For non-Boolean semirings, the best known

algorithm, called InsideOut [4, 5], evaluates (2) in timeO(N fhtw logN ).
For queries with free variables, fhtw is replaced by the more gen-
eral notion of FAQ-width (faqw) [4]; however, for brevity we dis-
cuss the non-free variable case here.

Following [5], both width parameters subw and fhtw can be de-
fined via two constraint sets: the first is the set TD of all tree de-
compositions of the query hypergraphH , and the second is the set
of polymatroids Γn on n vertices ofH . The widths subw and fhtw

are then defined as maximin or minimax optimization problems
on the domain pair TD and Γn , subject to “edge domination” con-
straints for Γn . Section 2 presents these notions and other related
preliminary concepts in detail.

Our contributions include the following:

Answering FAQ-AI over Boolean semiring. On the Boolean semir-
ing, one way to answer query (3) is to apply the PANDA algo-
rithm [26], using edge domination constraints on Es and the set
TD of all tree decompositions of H = (V ,E = Es ∪ Eℓ ). How-
ever, this is sub-optimal. Therefore, in Section 3.2 we define a new
notion of tree decomposition: relaxed tree decomposition, in which
the hyperedges in Eℓ only have to be covered by adjacent TD
bags. Then, we present a variant of the InsideOut algorithm run-
ning on these relaxed TDs, exploiting Chazelle’s classic geometric
data structure [9] for solving the semigroup range search problem.
We show that our InsideOut variant meets the “relaxed fhtw” run-
time, which is the analog of fhtw on relaxed TD. The PANDA al-
gorithm can use the InsideOut variant as a blackbox to meet the
“relaxed subw” runtime. The relaxed widths are smaller than the
non-relaxed counterparts, and are strictly smaller for some classes
of queries, which means our algorithms yield asymptotic improve-
ments over existing ones.

Answering FAQ over other semirings. Next, to prepare the stage
for answering FAQ-AI over non-Boolean semirings, in Section 3.3
we revisit FAQ over non-Boolean semirings, where no known al-
gorithm can achieve the subw-runtime. Here, we relax the set Γn

3Section 2.1 overviews other notions of widths.
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of polymatroids to a superset Γ′n of relaxed polymatroids. Then, by
relaxing the subw definition over relaxed polymatroids, we obtain
a new width parameter called “sharp submodular width” (#subw).
We show how a variant of PANDA, called #PANDA, can achieve a
runtime of Õ(N #subw) for evaluating FAQ over non-Boolean semir-
ings. We prove that subw ≤ #subw ≤ fhtw, and that there are
classes of queries where #subw is unboundedly smaller than fhtw.

Answering FAQ-AI over other semirings. Getting back to FAQ-AI,
we apply the #subw result under both relaxations: relaxed TD and
relaxed polymatroids, to obtain a new width parameter called the
relaxed #subw. We show that the new variants of PANDA and
InsideOut can achieve the relaxed #subw runtime. We also show
that there are queries for which relaxed #subw is essentially the
best we can hope for, modulo k-sum-hardness.

Applications in relational Machine Learning. Equipped with the
algorithms for answering FAQ-AI, in Section 4 we return to rela-
tional machine learning applications over datasets defined by fea-
ture extraction queries over relational databases. We show how
one can train linear SVM,k-means, andMLmodels over Huber/hinge
loss functions without completely materializing the output of the
feature extraction queries. In particular, this shows that for these
important classes of ML models, one can sometimes train models
in time sub-linear in the training dataset size.

1.4 Related work

Appendix C revisits two prior results on the evaluation of queries
with inequalities through FAQ-AI lenses: Core XPath queries over
XML documents and inequality joins over tuple-independent prob-
abilistic databases [30]. Throughout the paper, we contrast our
new width notions with fhtw and subw and our new algorithm
#PANDAwith the state-of-the-art algorithms PANDA and InsideOut
for FAQ and FAQ-AI queries. A seminal work considers the contain-
ment and minimization problem for queries with inequalities [22].
There is a bulk of work on queries with disequalities (not-equal),
e.g., [3] and references therein, which are at times referred to as
inequalities.

Section 4 sets the context for our results on machine learning.

2 PRELIMINARIES

Throughout the paper, we use the following convention. For any
Boolean event/variableA and a given semiring (D, ⊕, ⊗, 0, 1), let 1A
denote the indicator variable, which takes the value 1 ifA holds (or
is true), and 0 othewise. We assume without loss of generality in
the paper that semiring operations ⊕ and ⊗ can be performed in
O(1)-time. (When the assumption does not hold, for the set semir-
ing for instance, we can multiply the claimed runtime with the real
operation’s runtime.)

2.1 Tree decompositions and polymatroids

We briefly define tree decompositions, fhtw and subw parameters.
We refer the reader to the recent survey by Gottlob et al. [13] for
more details and historical contexts. In what follows, the hyper-
graphH should be thought of as the hypergraph of the input query,
although the notions of tree decomposition and width parameters
are defined independently of queries.

A tree decomposition of a hypergraphH = (V ,E) is a pair (T , χ ),
where T is a tree and χ : V (T ) → 2V maps each node t of the tree
to a subset χ (t) of vertices such that

(1) every hyperedge F ∈ E is a subset of some χ (t), t ∈ V (T )
(i.e. every edge is covered by some bag),

(2) for every vertex v ∈ V, the set {t | v ∈ χ (t)} is a non-
empty (connected) sub-tree of T . This is called the running
intersection property.

The sets χ (t) are often called the bags of the tree decomposition.
Let TD(H) denote the set of all tree decompositions ofH . When

H is clear from context, we use TD for brevity.
To define width parameters, we use the polymatroid character-

ization from Abo Khamis et al. [6]. A function f : 2V → R+ is
called a (non-negative) set function on V . A set function f on V
is modular if f (S) = ∑

v ∈S f ({v}) for all S ⊆ V , is monotone if
f (X ) ≤ f (Y ) whenever X ⊆ Y , and is submodular if f (X ∪ Y ) +
f (X∩Y ) ≤ f (X )+ f (Y ) for allX ,Y ⊆ V . A monotone, submodular

set function h : 2V → R+ with h(∅) = 0 is called a polymatroid.
Let Γn denote the set of all polymatroids onV with |V| = n.

Given someH , define the set of edge dominated set functions:

ED := {h | h : 2V → R+,h(F ) ≤ 1,∀F ∈ E}. (6)

With this, we define the submodular width and fractional hyper-
tree width of a given hypergraphH :

fhtw(H) := min
(T ,χ )∈TD

max
h∈ED∩Γn

max
t ∈V (T )

h(χ (t)), (7)

subw(H) := max
h∈ED∩Γn

min
(T ,χ )∈TD

max
t ∈V (T )

h(χ (t)). (8)

It is known [26] that subw(H) ≤ fhtw(H), and there are classes
of hypergraphs with bounded subw and unbounded fhtw. Further-
more, fhtw is strictly less than other width notions such as (gener-
alized) hypertree width and tree width.

Remark 2.1. Prior to Abo Khamis et al. [6], the commonly used
definition of fhtw(H) is fhtw(H) :=min(T ,χ )∈TD maxt ∈V (T ) ρ

∗
E (χ (t)),

where ρ∗E(B) is the fractional edge cover number of a vertex set B
using the hyperedge set E. It is straightforward to show, using lin-
ear programming duality [6], that

max
t ∈V (T )

max
h∈ED∩Γn

h(χ (t)) = max
t ∈V (T )

ρ∗E(χ (t)), (9)

proving the equivalence of the two definitions. However, the char-
acterization (7) has two primary advantages: (i) it exposes the min-
imax / maximin duality between fhtw and subw, and more impor-
tantly (ii) it makes it completely straightforward to relax the def-
initions by replacing the ED ∩ Γn constraints by other applicable
constraints, as shall be shown in later sections. �

Definition 2.2 (F -connex tree decomposition [7, 32]). Given a hy-
pergraph H = (V ,E) and a set F ⊆ V , a tree decomposition
(T , χ ) of H is F -connex if F = ∅ or the following holds: There is a
nonempty subset V ′ ⊆ V (T ) that forms a connected subtree of T
and satisfies

⋃
t ∈V ′ χ (t) = F .

We use TDF to denote the set of all F -connex tree decomposi-
tions ofH . (Note that when F = ∅, TDF = TD.)
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2.2 InsideOut and PANDA

To answer the FAQ query (2), we need a model for the represen-
tation of the input factors RK . The support of the function RK is
the set of tuples xK such that R(xK ) , 0. We use |RK | to denote
the size of its support. For example, if RK represents an input re-
lation, then |RK | is the number of tuples in RK . In practice, there
often are factors with infinite support, e.g., RK represents a built-
in function in a database, an arithmetic operator, or a comparison
operator as in (3). To deal with this more general setting, the edge
set E is partitioned into two sets E = E 6∞ ∪ E∞ , where |RK | is
finite for all K ∈ E 6∞ and |RK | = ∞ for all K ∈ E∞ . For simplicity,
we often state runtimes of algorithms in terms of the “input size”
N := maxK ∈E 6∞ |RK |. Moreover, we use |Q | to denote the output
size of Q .

InsideOut [4, 5]. To answer (2), the InsideOut algorithm works
by eliminating variables, along with an idea called the “indicator
projection”. Its runtime is described by the FAQ-width of the query,
a slight generalization of fhtw. In the context of one semiring, we
can define faqw(Q) by applying Definition (7) over a restricted set
of tree decompositions and edge dominated polymatroids. In par-
ticular, let F ⊆ V denote the set of free variables in (2), and recall
TDF from Definition 2.2. Then,

ED 6∞ := {h | h : 2V → R+,h(F ) ≤ 1,∀F ∈ E 6∞}, (10)

faqw(Q) := min
(T ,χ )∈TDF

max
h∈ED6∞∩Γn

max
t ∈V (T )

h(χ (t)) (11)

(by Remark 2.1) = min
(T ,χ )∈TDF

max
t ∈V (T )

ρ∗E 6∞ (χ (t)) (12)

Note that faqw(Q) = fhtw(H) when F = ∅ and E∞ = ∅ (i.e. E =
E 6∞). A simple result from Abo Khamis et al. [4] is the following:

Proposition 2.3. InsideOut answers query (2) in timeO(N faqw(Q ) ·
logN + |Q |).

To solve the FAQ-AI (3), we can apply Proposition 2.3 withE∞ ⊇
Eℓ (because all ligament factors are infinite). But this is suboptimal—
later, we show a new InsideOut variant that is polynomially better.

PANDA [6]. In case of the Boolean semiring, i.e., when the FAQ
query (2) is of the form

Q(xF ) =
∨

xV\F ∈
∏

i∈V\F Dom(Xi )

∧
K ∈E

RK (xK ), (13)

we can domuch better than Proposition 2.3.When F = ∅, Marx [26]

showed that (13) can be answered in time Õ(NO (subw(Q ))). The
PANDA algorithm [6] generalizes Marx’s result to deal with gen-

eral degree constraints, and to meet precisely the Õ(N subw(Q ))-
runtime. In fact, PANDAworks with queries such as (13) with free
variables as well. In the context of this paper, we can define the
following notion of submodular FAQ-width in a very natural way:

smfw(Q) := max
h∈ED6∞∩Γn

min
(T ,χ )∈TDF

max
t ∈V (T )

h(χ (t)). (14)

Then, the results from Abo Khamis et al. [6] imply:

Proposition 2.4. PANDA answers query (13) in time Õ(N smfw(Q )
+

|Q |).
These results only work for the Boolean semiring. Section 3 in-

troduces a variant of PANDA, called #PANDA, that also works for
non-Boolean semirings.

2.3 Semigroup range searching

Orthogonal range counting (and searching) is a classic and ubiqui-
tous problem in computational geometry [11]: given a set S of N
points in a d-dimensional space, build a data structure that, given
any d-dimensional rectangle, can efficiently return the number of
enclosed points.More generally, there is the semigroup range search-

ing problem [9], where each point p ∈ S of the N input points also
has a weightw(p) ∈ G, where (G, ⊕) is a semigroup.4 The problem
is: given a d-dimensional rectangle R, compute

⊕
p ∈S∩R w(p).

Classic results by Chazelle [9] show that there are data struc-
tures for semigroup range searching which can be constructed in

timeO(N logd−1 N ), and answer rectangular queries inO(logd−1 N )-
time. Also, this is almost the best we can hope for [10]. There are
more recent improvements to Chazelle’s result (see, e.g., Chan et
al. [8]), but they are minor (at most a log factor), as the original
results were already very close to matching the lower bound.

Most of these range search/counting problems can be reduced to
the dominance range searching problem (on semigroups), where
the query is represented by a point q, and the objective is to re-
turn

⊕
q�p ,p ∈S w(p). Here, � denotes the “dominance” relation

(coordinate-wise ≤). We can think of q as the lower-corner of an
infinite rectangle query.

3 RELAXED TREE DECOMPOSITIONS AND

RELAXED POLYMATROIDS

3.1 Connection to a geometric data structure

We start with a special case of (3) in which the skeleton part Es
contains only two hyperedges U and L. Formally, consider the ag-
gregate query of the form

Q(xF ) =
⊕
xV\F

Φ1(xU ) ⊗ Φ2(xL) ⊗
©­«
⊗
S ∈Eℓ

1∑
v∈S θ

S
v (xv )≤0

ª®
¬
, (15)

where Φ1 and Φ2 are two input functions/relations over variable
setsU and L, respectively. We prove the following very simple but
important lemma:

Lemma 3.1. Let N = max{|Φ1 |, |Φ2 |}, and k = |Eℓ |, then when

F ⊆ U , query (15) can be answered in timeO(N · (logN )max(k−1,1)).

Proof. If there is a hyperedge S ∈ Eℓ for which S ⊆ U , then
in a O(N logN )-time pre-processing step we can “absorb” the fac-
tor 1∑

v∈S θ
S
v (xv )≤0 into the factor Φ1, by replacing Φ1(xU ) with

Φ1(xU ) ⊗ 1∑
v∈S θ

S
v (xv )≤0. A similar absorption can be done with

S ⊆ L. Hence, without loss of generality we can assume that S * L

and S * U for all S ∈ Eℓ . Furthermore, we only need to show that
we can compute (15) for F = U , because after Q(xU ) is computed,
we can marginalize away variables xU \F in O(N logN )-time.

Abusing notation somewhat, for each S ∈ Eℓ and each T ⊆ S ,

define the function θS
T
:
∏

v ∈T Dom(Xv ) → R by

θST (xT ) :=
∑
v ∈T

θSv (xv ). (16)

4In a semigroup we can add two elements using ⊕, but there is no additive inverse.
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Fix a tuple xU such that Φ1(xU ) , 0. A tuple xL is said to be xU -

adjacent if πU ∩LxU = πU∩LxL . We show how to compute the fol-
lowing sum in poly-logarithmic time:

⊕
xL\U

Φ1(xU ) ⊗ Φ2(xL) ⊗
©­
«
⊗
S ∈Eℓ

1∑
v∈S θ

S
v (xv )≤0

ª®¬
= (17)

Φ1(xU ) ⊗
⊕
xL\U

Φ2(xL) ⊗
©­
«
⊗
S ∈Eℓ

1θ S
S∩U (xS∩U )≤−θ

S
S\U (xS\U )

ª®
¬
. (18)

where the inner sum ranges over only tuples xL which are xU -
adjacent; non-adjacent tuples contribute 0.

Now, for each xU define two k-dimensional points:

q(xU ) = (qS (xU ))S ∈Eℓ where qS (xU ) := θSS∩U (xS∩U ), (19)

p(xL) = (pS (xL))S ∈Eℓ where pS (xL) := −θSS\U (xS\U ). (20)

We write q(xU ) � p(xL) to say that q(xU ) is dominated by p(xL)
coordinate-wise: qS (xU ) ≤ pS (xL) ∀ S ∈ Eℓ . Assign to each point
p(xL) a “weight” of Φ2(xL). Now, taking (18),⊕

xL\U

Φ2(xL) ⊗
©­
«
⊗
S ∈Eℓ

1θ S
S∩U (xS∩U )≤−θ

S
S\U (xS\U )

ª®¬
=

⊕
xL\U

©­
«
⊗
S ∈Eℓ

1qS (xU )�pS (xL )
ª®¬
⊗ Φ2(xL) (21)

=

⊕
xL\U

1q(xU )�p(xL ) ⊗ Φ2(xL). (22)

The expression thus computes, for a given “query point” q(xU ),
the weighted sum over all points p(xL) that dominate the query
point. This is precisely the dominance range counting problem,

which—modulo a O(N (logN )max(k−1,1))-preprocessing step—can

be solved in timeO((logN )max(k−1,1)) [9], as reviewed in Section 2.3.
To conclude the proof, note that (15) can bewritten as (assuming

F ⊆ U as is the case in Lemma 3.1)

Q(xF )=
⊕
xU \F

⊕
xL\U

Φ1(xU ) ⊗Φ2(xL) ⊗
©­«
⊗
S ∈Eℓ

1∑
v∈S θ

S
v (xv )≤0

ª®
¬︸                                                        ︷︷                                                        ︸

same as (17)

,

where the outer sum ranges over N tuples xU in Φ1. �

Example 3.2. Let R be a binary relation. Suppose we want to
count the number of tuples satisfying R(a,b)∧R(b , c)∧a < c , then
by setting F = ∅, U = {a,b}, L = {b ,c}, it is easy to see that the
problem can be reduced to the form (15) with k = 1, Eℓ = {{a,c}}.
We can thus compute this count in time O(N logN ). �

3.2 Relaxed tree decompositions

Equipped with this basic case, we can now proceed to solve the
general setting of (3). To this end, we define a new width parame-
ter.

Definition 3.3 (Relaxed tree decomposition). Let H = (V ,E =
Es ∪ Eℓ ) denote a multi-hypergraph whose edge multiset is parti-
tioned into Es and Eℓ . A relaxed tree decomposition ofH (with re-
spect to the partitionEs∪Eℓ ) is a pair (T , χ ), whereT = (V (T ),E(T ))
is a tree, and χ : V (T ) → 2V satisfies the following properties:

• The running intersection property holds: for each nodev ∈
V the set {t ∈ V (T ) | v ∈ χ (t)} is a connected subtree in T .
• Every “skeleton” edge F ∈ Es is covered by some bag χ (t),
t ∈ V (T ).
• Every “ligament” edge F ∈ Eℓ is covered by the union of
two adjacent bags: F ⊆ χ (s) ∪ χ (t), where {s , t} ∈ E(T ).

Let TDℓ (H) denote the set of all relaxed tree decompositions ofH
(with respect to the skeleton-ligament partition). WhenH is clear

from context we use TDℓ for the sake of brevity. Let TDℓ

F
denote

the set of all relaxed F -connex tree decompositions ofH .

3.2.1 FAQ-AI on a general semiring. We use relaxed TDs in con-
junction with Lemma 3.1 to answer FAQ-AI with a relaxed notion
of faqw. In particular, the relaxed width parameters of H are de-
fined in exactly the same way as the usual width parameters de-
fined in Section 2, except we allow the TDs to range over relaxed
ones.

Definition 3.4 (Relaxed faqw). LetQ be an FAQ-AI query (3), and
H = (V,E = Es ∪ Eℓ ) be its hypergraph. Furthermore, let E 6∞ ⊆
Es denote the set of hyperedges K ∈ E for which |RK | < ∞. Then,
the relaxed FAQ-width ofQ is defined by

faqwℓ(Q) := min
(T ,χ )∈TDℓ

F

max
h∈ED6∞∩Γn

max
t ∈V (T )

h(χ (t)) (23)

When F = ∅, faqwℓ collapses back to fhtwℓ , in which case we
define the relaxed fhtw for FAQ-AI Q without free variables:

fhtwℓ(Q) := min
(T ,χ )∈TDℓ

∅

max
h∈ED6∞∩Γn

max
t ∈V (T )

h(χ (t)) (24)

A relaxed tree decomposition (T , χ ) ofQ is optimal if its width is
equal to faqwℓ , i.e., faqwℓ(Q) = maxh∈ED6∞∩Γn maxt ∈V (T ) h(χ (t)).

Theorem3.5. Any FAQ-AI queryQ of the form (3) on any semiring

can be answered in timeO(N faqw
ℓ
(Q ) ·(logN )max(k−1,1)

+ |Q |), where
k is the maximum number of additive inequalities covered by a pair

of adjacent bags in an optimal relaxed tree decomposition.5

Proof. We first consider the case of no free variables (i.e. F =
∅), because this case captures the key idea. Fix an optimal relaxed
TD (T , χ ). We first compute, for each bag t ∈ V (T ) of the tree
decomposition, a factor Φt :

∏
i ∈χ (t ) Dom(Xi ) → D such that

Q() =
⊕
xV

©­«
⊗
K ∈Es

RK (xK )
ª®
¬
⊗ ©­«

⊗
S ∈Eℓ

1∑
v∈S θ

S
v (xv )≤0

ª®
¬

(25)

=

⊕
xV

©­
«

⊗
t ∈V (T )

Φt (xχ (t ))
ª®
¬
⊗ ©­

«
⊗
S ∈Eℓ

1∑
v∈S θ

S
v (xv )≤0

ª®
¬
. (26)

To define the factors Φt , we need the notion of the indicator pro-
jection [4, 5]. For a given K ∈ Es and t ∈ V (T ) such that J :=
K ∩ χ (t) , ∅, the indicator projection of RK onto the bag χ (t) is a
function πt ,K :

∏
v ∈J Dom(Xv ) → {0, 1} defined by

πt ,K (x J ) :=
{
1 ∃xK\J s.t. RK ((x J ,xK\J )) , 0,

0 otherwise.
(27)

5Note that k can be a lot smaller than |Eℓ |.
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Recall from Definition 3.3 that every K ∈ Es is covered by at
least one bag χ (t) for t ∈ V (T ). Fix an arbitrary coverage assign-
ment α : Es → V (T ), whereK is covered by the bag χ (α(K)). Then,
the factors Φt are defined by:

Φt (xχ (t )) :=
⊗

K ∈α−1(t )
RK (xK ) ⊗

⊗
K ∈Es

K∩χ (t ),∅

πt ,K (xK∩χ (t )). (28)

It is straightforward to verify that (26) holds. Using any worst-case
optimal join algorithm [28, 29, 36] we can compute (28) in time

Õ(N ρ∗E6∞
(χ (t ))) = O(Nmaxh∈ED6∞∩Γn h(χ (t ))). (29)

Over all t ∈ V (T ), our runtime is bounded by O(Nw ), where
w = max

t ∈V (T )
max

h∈ED6∞∩Γn
h(χ (t)). (30)

In addition, the support of each factor Φt has size bounded by N
w .

Next we compute (26) in time Õ(Nw ). We will make use of the
fact that (T , χ ) is a relaxed TD. Fix an arbitrary root of the tree de-
composition (T , χ ); following InsideOut, we compute (26) by elim-
inating variables from the leaves of (T , χ ) up to the root. Without
loss of generality, we assume that the tree decomposition is non-
redundant, i.e., no bag is a subset of another in the tree decomposi-
tion (otherwise the contained bag factor can be “absorbed” into the
containee bag factor). Let t1 be any leaf of (T , χ ), t2 be its parent,
where L = χ (t1) and U = χ (t2). Now write (26) as follows:

⊕
xV

©­
«

⊗
t ∈V (T )

Φt (xχ (t ))
ª®¬
⊗ ©­

«
⊗
S ∈Eℓ

1∑
v∈S θ

S
v (xv )≤0

ª®¬
=

⊕
xV\(L\U )

⊕
xL\U

©­«
⊗

t ∈V (T )
Φt (xχ (t ))

ª®
¬
⊗ ©­«

⊗
S ∈Eℓ

1∑
v∈S θ

S
v (xv )≤0

ª®
¬

(31)

=

⊕
xV\(L\U )

©­«
⊗

t ∈V (T )\{t1 ,t2 }
Φt (xχ (t ))

ª®
¬
⊗

©­­­«
⊗
S ∈Eℓ

S∩(L\U )=∅

1∑
v∈S θ

S
v (xv )≤0

ª®®®®¬
⊗


⊕
xL\U

Φt1 (xL) ⊗Φt2 (xU ) ⊗
©­­­
«

⊗
S ∈Eℓ

S∩(L\U ),∅

1∑
v∈S θ

S
v (xv )≤0

ª®®®®
¬


.

︸                                                                  ︷︷                                                                  ︸
sub-query of the form (15)

(32)

The third equality uses the semiring’s distributive law. (Note that
S ∩ (L \ U ) , ∅ implies that S ⊆ (L ∪U ) thanks to Definition 3.3
and the fact that t2 is the only neighbor of t1.) Lemma 3.1 implies
that we can compute the sub-query in the allotted time. The above
step eliminates all variables in L\U . Repeatedly applying the above
step yields the desired outputQ().

When the query has free variables, the algorithm proceeds sim-
ilarly to the case of an FAQ query with free variables [4, 5]. �

Example 3.6. Given 3 binary relations R, S andT , consider a query
Q about the number of tuples (a,b ,c ,d) that satisfy:

R(a,b) ∧ S(b ,c) ∧T (c ,d) ∧ (a ≤ c) ∧ (c ≤ b) ∧ (d ≤ b). (33)

The query Q has Es = E 6∞ = {{a,b}, {b ,c}, {c ,d}} and Eℓ =
E∞ = {{a,c}, {b ,c}, {b ,d}}. Let N = max{|R |, |S |, |T |}. Note that

a b c d

b c
≤ ≥

≥

Figure 1: An optimal relaxed tree decomposition for the

query in Example 3.6. Ligament edges are dashed. Each skele-

ton edge is held in one bag.

faqw(Q) = 2. In fact, any of the previously known algorithms,
e.g. [4, 5], would take timeO(N 2) to answerQ . However, this query
has faqwℓ(Q) = 1, and by Theorem 3.5, it can be answered in time
O(N · logN ). (Note that here 2 = k < |Eℓ | = 3.) An optimal relaxed
tree decomposition is shown in Figure 1. �

We next give a couple of simple lower and upper bounds for
faqwℓ . The upper bound shows that, effectively faqwℓ is the best
we can hope for, if the FAQ-AI query is arbitrary. The lower bound
shows that, while the relaxed tree decomposition idea can improve
the runtime by a polynomial factor, it cannot improve the runtime
over straightforwardly applying InsideOut (over non-relaxed tree
decompositions) by more than a polynomial factor.

Proposition 3.7. For any positive integerm, there exists an FAQ-AI

query of the form (3) for which F = ∅, faqwℓ (Q) ≥ m and it cannot

be answered in time o(N faqw
ℓ
(Q )), modulo k-sum hardness.

Proposition 3.8. For any FAQ-AI queryQ of the form (3), we have
faqwℓ(Q) ≥ 1

2 faqw(Q); in particular, when Q has no free variables

fhtwℓ (Q) ≥ 1
2 fhtw(Q).

3.2.2 FAQ-AI on the Boolean semiring. Before formally explaining
howwe can adaptPANDA to solve an FAQ-AI query on the Boolean
semiring, we give the intuition with an example.

Example 3.9. Consider the following FAQ-AI (written in Data-
log):

Q() ← R(a,b) ∧ S(b ,c) ∧T (c ,d) ∧ a ≤ d . (34)

Here faqwℓ(Q) = faqw(Q) = 2. Using fractional hypertree width
measure and InsideOut (even with relaxed TDs and Theorem 3.5),
the best runtime is O(N 2), because no matter which (relaxed) TD
we choose, the worst-case bag relation size is Θ(N 2). A key idea of
the PANDA framework [6] is the use of a disjunctive Datalog rule.
Consider the following disjunctive Datalog rule:

U (a,b ,c) ∨W (b ,c ,d) ← R(a,b) ∧ S(b ,c) ∧T (c ,d). (35)

There are two relations in the head U and W , and they form a
solution to the rule iff the following holds: if (a,b ,c ,d) satisfies the
body, then either (a,b ,c) ∈ U or (b ,c ,d) ∈ W . Via information-
theoretic inequalities [6], we are able to show that PANDA can
compute a solution (U ,W ) to the above disjunctive Datalog rule in
time Õ(N 1.5). In particular, both |U | and |W | are bounded by N 1.5.

Given the solution (U ,W ) to (35), it is straightforward to verify
that the following also holds, using the distributivity of ∨ over ∧:

(R(a,b) ∧W (b ,c ,d)) ∨ (U (a,b , c) ∧T (c ,d))
← R(a,b) ∧ S(b ,c) ∧T (c ,d). (36)
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By semijoin-reducingW against S ,T , and semjoin-reducingU against
R, S , we conclude that

(R(a,b)∧W (b ,c ,d))∨(U (a,b ,c)∧T (c ,d)) ≡ R(a,b)∧S(b ,c)∧T (c ,d).
Finally, we have a rewrite of the original body:

[R(a,b) ∧W (b ,c ,d) ∧ a ≤ d] ∨ [U (a,b , c) ∧T (c ,d) ∧ a ≤ d]
≡ R(a,b) ∧ S(b ,c) ∧T (c ,d) ∧ a ≤ d . (37)

By defining intermediate rules, we can computeQ from them:

Q1() ← R(a,b) ∧W (b ,c ,d) ∧ a ≤ d , (38)

Q2() ← U (a,b ,c) ∧T (c ,d) ∧ a ≤ d , (39)

Q() ← Q1() ∨Q2(). (40)

The key point is thatQ1 andQ2 are of the form (15), and thus they

each can be answered in Õ(N 1.5)-time (since |U |, |W | ≤ N 1.5). This
implies that Q can be answered in Õ(N 1.5)-time overall. �

The strategy outlined in the above example uses PANDA to eval-
uate an FAQ-AI query over the Boolean semiring. The resulting al-
gorithm achieves a natural generalization of the submodular FAQ-
width defined in (14):

Definition 3.10. Given an FAQ-AI query Q (3) over the Boolean
semiring. The relaxed submodular FAQ-width ofQ is defined by

smfwℓ(Q) := max
h∈ED6∞∩Γn

min
(T ,χ )∈TDℓ

F

max
t ∈V (T )

h(χ (t)). (41)

(Recall that the set of relaxed tree decompositions TDℓ

F
was de-

fined in Definition 3.3.)

Theorem 3.11. Any FAQ-AI queryQ of the form (3) on the Boolean

semiring can be answered in time Õ(N smfwℓ (Q ) + |Q |).

Proof. As in the proof of Theorem 3.5, we first assume there
are no free variables; the case when F , ∅ is a trivial extension.
When F = ∅, the query (3) is written in Datalog as:

Q() ←
∧

K ∈Es
RK ∧

∧
S ∈Eℓ

[∑
v ∈S

θSv ≤ 0

]
. (42)

Here, wewrite onlyRK instead ofRK (xK ) and θSv instead ofθSv (xv )
to avoid clutter. It will be implicit throughout this proof that the
subscript of a factor/function indicates its arguments. To answer
query (42), we first rewrite the skeleton of the body into a disjunc-
tion over all relaxed tree decompositions:∧

K ∈Es
RK ≡

∨
(T ,χ )∈TDℓ

∅

∧
t ∈V (T )

S
(T ,χ )
χ (t ) . (43)

Note that the right-hand side of (43) is a Boolean tensor decompo-

sition of the left-hand side. The idea of using Boolean tensor de-
composition to speed up query evaluation was used in [3] in the
context of queries with disequalities. Assuming that we can com-

pute the intermediate relations S
(T ,χ )
χ (t ) efficiently satisfying (43),

then (42) can be answered by answering for each (T , χ ) ∈ TDℓ

∅
an intermediate query:

Q (T ,χ )() ←
∧

t ∈V (T )
S
(T ,χ )
χ (t ) ∧

∧
S ∈Eℓ

[∑
v ∈S

θSv ≤ 0

]
. (44)

The final answer Q is obtained by the trivial Datalog rule:

Q() ←
∨

(T ,χ )∈TDℓ

∅

Q (T ,χ )(). (45)

The key point to notice here is that each intermediate query (44) is
an FAQ-AI query (3) with faqwℓ = 1, and thus from Theorem 3.5

each one of them can be answered in time Õ(M) where

M = max
(T ,χ )∈TDℓ

∅

max
t ∈V (T )

|S (T ,χ )
χ (t ) |. (46)

It remains to compute a solution to (43); to do so, we apply dis-
tributivity of ∨ over ∧ to rewrite the left-hand side as follows.

Let M be the collection of all maps β : TDℓ

∅ → 2V such that

β(T , χ ) = χ (t) for some t ∈ V (T ); in other words, β selects one bag
χ (t) out of each tree decomposition (T , χ ). Then, from the distribu-
tive law we have∨

(T ,χ )∈TDℓ

∅

∧
t ∈V (T )

S
(T ,χ )
χ (t ) ≡

∧
β ∈M

∨
(T ,χ )∈TDℓ

∅

S
(T ,χ )
β (T ,χ ), (47)

which means to solve the relational equation (43) we can instead
solve the equation∧

β ∈M

∨
(T ,χ )∈TDℓ

∅

S
(T ,χ )
β (T ,χ ) ≡

∧
K ∈Es

RK . (48)

We seek the equivalence by solving for each of the clauses on the
left-hand side separately, because the left-hand side is a conjunc-
tion. In particular, we need to compute solutions to the following
disjunctive Datalog rules, one for each β ∈ M :∨

(T ,χ )∈TDℓ

∅

W
(T ,χ )
β (T ,χ ) ←

∧
K ∈Es

RK . (49)

Oncewe obtain the relationsW
(T ,χ )
β (T ,χ ), we can semijoin-reduce them

against the input relations, and define S
(T ,χ )
β (T ,χ ) to be the union of

all the correspondingW
(T ,χ )
β (T ,χ ) over all β .

Finally, we evaluate each disjunctive Datalog rule (49) by run-
ning thePANDA algorithm,which computes the rule in time bounded

by Õ(N e (β )), where

e(β) = max
h∈ED6∞∩Γn

min
(T ,χ )∈TDℓ

∅

h(β(T , χ )). (50)

Maximizing over β ∈ M , the runtime is bounded by Õ(Nw ), where

w = max
β ∈M

e(β) (51)

= max
β ∈M

max
h∈ED6∞∩Γn

min
(T ,χ )∈TDℓ

∅

h(β(T , χ )) (52)

= max
h∈ED6∞∩Γn

max
β ∈M

min
(T ,χ )∈TDℓ

∅

h(β(T , χ )) (53)

= max
h∈ED6∞∩Γn

min
(T ,χ )∈TDℓ

∅

max
t ∈V (T )

h(χ (t)) = smfwℓ(Q). (54)

Equality (53) follows from the minimax lemma in [6]. Our reason-

ing above also shows that M from (46) is bounded by N smfwℓ (Q ).
�
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3.3 Relaxed polymatroids

A key step in the proof of Theorem 3.11 is to find the Boolean ten-
sor decomposition (43) of the product over RK . In a non-Boolean
semiring, this becomes a tensor decomposition on this semiring:⊗

K ∈Es
RK =

⊕
(T ,χ )∈TDℓ

F

⊗
t ∈V (T )

S
(T ,χ )
χ (t ) . (55)

In order to compute this tensor decomposition, we can still follow
the script of the proof of Theorem 3.11, working on the parameter
space of the input factors RK ; however, for the equality in (55) to
hold (it is an identity over the value-space of the factors), we have
to ensure the following property:

For any xV s.t.
⊗

K ∈Es RK (xK ) , 0, there is exactly

one tree decomposition (T , χ ) ∈ TDℓ

F
for which⊗

t ∈V (T )
S
(T ,χ )
χ (t ) (xχ (t )) =

⊗
K ∈Es

RK (xK ), (56)

while for the other TDs, the left-hand side above is 0.

Essentially, the property ensures that we do not have to perform

inclusion-exclusion (IE) over the tree decompositions in TDℓ

F
.6 We

do not know how to ensure this property in general. However, un-
der a relaxed notion of polymatroids, the property above holds.
Since this idea applies to FAQ queries in general, we start with
our result on FAQ queries first, before specializing it to FAQ-AI.

3.3.1 FAQ on non-Boolean semirings. To explain howwe can guar-
antee the property (56) for an FAQ query over a non-Boolean semir-
ing, consider the following example. Suppose that we would like
to evaluate the (aggregate) query

Q() =
∑
x[4]

R12(x1,x2)R23(x2,x3)R34(x3,x4)R41(x4,x1). (57)

We write Ri j instead of Ri j (xi ,xj ) for short. The factors Ri j are
functions of two variables Ri j : Dom(Xi ) × Dom(X j ) → R, and
they are represented by ternary relations in a database. Abusing
notation we will also use Ri j to refer to its support, i.e., the binary
relation over (Xi ,X j ) such that (xi ,xj ) ∈ Ri j iff Ri j (xi ,xj ) , 0.

There are only two non-trivial tree decompositions for the “4-
cycle” query (57): one with bags {1, 2, 3} and {3, 4, 1}, and the other
with bags {1, 2, 4} and {2, 3, 4}. To evaluate the query, we first solve
the relation equation (55), but only on the supports; i.e., we would
like to find relations S123, S341, S234, and S412 such that

R12 ∧ R23 ∧ R34 ∧ R41 ≡ (S123 ∧ S341) ∨ (S234 ∧ S412) ≡ (58)

(S123 ∨ S234) ∧ (S123 ∨ S412) ∧ (S341 ∨ S234) ∧ (S341 ∨ S412).
The second ≡ is due to the distributivity of ∨ over ∧. Since the last
formula is in CNF, we can solve each term separately by solving 4
different disjunctive Datalog rules:

(S123 ∨ S234) ← R12 ∧ R23 ∧ R34 ∧ R41, (59)

(S123 ∨ S412) ← R12 ∧ R23 ∧ R34 ∧ R41, (60)

(S341 ∨ S234) ← R12 ∧ R23 ∧ R34 ∧ R41, (61)

(S341 ∨ S412) ← R12 ∧ R23 ∧ R34 ∧ R41. (62)

6IE is difficult for two reasons: (1) IE computation explodes the runtime, and (2) in a
general semiring there may not be additive inverses and thus IE may not even apply.

Applying the proof-to-algorithmconversion idea from [6], the above
disjunctive Datalog rules can be solved with the PANDA algorithm.
It is beyond the scope of the main body of this paper to describe
the PANDA algorithm in full details. However, we can describe a
solution. Let N = max{|R12 |, |R23 |, |R34 |, |R41 |}. For each input re-
lation/factor, define their “light” parts as follows.

Rℓi j := {(xi ,xj ) ∈ Ri j : |σXi=xiRi j | ≤
√
N }. (63)

Also, for every Ri j , define R
h
i j := Ri j \R

ℓ

i j . Then, one can verify that

the following is a solution to the relational equations (59). . . (62)
(and by semijoin-reducing each one of them with relations Ri j ,
they become a solution to (58) as well):

Si jk = Ri j Z Rl
jk
∪ πiRhi j Z Rjk . (64)

Furthermore, it is straightforward to verify that each Si jk can be

computed in Õ(N 1.5)-time. Once we have obtained this solution
to the relational equation, i.e., we have the relations Si jk , we can
extend them naturally into factors (so that they are represented
by 4-ary relations) satisfying (56). In particular, as functions with
range R, they are defined by

Si jk (xi ,xj ,xk ) := Ri j (xi ,xj ) · Rjk (xj ,xk ). (65)

The above sketch does not work for a generic FAQ query because
we do not know how to guarantee that (56) is satisfied given the
relational solution returned by PANDA. (If we were able to do so,
then the notion of submodular width would apply also to #CSP
and not just CSP.) However, we are able to prove that this strategy
works (i.e., (56) can be ensured) under a relaxed notion of polyma-
troids and a corresponding “sharp submodular (FAQ) width”.

Definition 3.12. Given a collection E of subsets ofV , a set func-
tion h : 2V → R+ is said to be a E-polymatroid if it satisfies the
following: (i) h(∅) = 0, (ii) h(X ) ≤ h(Y ) whenever X ⊆ Y , and (iii)
h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X ) + h(Y ) for every pair X ,Y ⊆ V such

thatX ∩Y ⊆ S for some S ∈ E. In particular, a 2V-polymatroid is a
polymatroid as defined in Section 2.1. ForV = [n], let Γn |E denote
the set of all E-polymatroids onV .

The following definition is a straightforward generalization of
smfw from (14), where we replace Γn by the relaxed polymatroids.

Definition 3.13. Given an FAQ query (2) whose hypergraph is
H = (V ,E = E 6∞ ∪ E∞), its #-submodular FAQ-width, denoted by
#smfw(Q), is defined by

#smfw(Q) := max
h∈ED6∞∩Γn |E6∞

min
(T ,χ )∈TDF

max
t ∈V (T )

h(χ (t)). (66)

When there are no free variables, i.e., F = ∅, we define #subw(Q) :=
#smfw(Q), to mirror the case when faqw(Q) = fhtw(Q).

Under the above more restricted width parameter7, our vision
above with condition (56) can now be realized:

Theorem 3.14. Any FAQ query Q of the form (2) on any semiring

can be answered in time Õ(N #smfw(Q )
+ |Q |).

7When we relax the polymatroids, the width goes up, and thus it is more restricted.
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Appendix A gives the proof of Theorem 3.14, which involves an
appropriate adaptation of PANDA called #PANDA. It also shows
that while #smfw(Q) can be larger than smfw(Q), it is not larger
than faqw(Q) and can be unboundedly smaller for classes of queries.

Proposition 3.15 (Connecting #smfw to both smfw and faqw).

(a) For any FAQ queryQ , the following holds:

smfw(Q) ≤ #smfw(Q) ≤ faqw(Q). (67)

In particular, when Q has no free variables, we have

subw(Q) ≤ #subw(Q) ≤ fhtw(Q). (68)

(b) Furthermore, there are classes of queries Q for which the gap

between #smfw(Q) and faqw(Q) is unbounded, and so is the

gap between #subw(Q) and fhtw(Q).

Example 3.16. Consider again the count query Q in (57), which

we showed earlier how to compute in time Õ(N 1.5). SinceQ has no
free variables, faqw(Q) = fhtw(Q) = 2 and #smfw(Q) = #subw(Q).
In the proof of Proposition 3.15, we show that #subw(Q) ≤ 1.5.
Therefore, the #PANDA algorithm from the proof of Theorem 3.14

can compute (57) in time Õ(N 1.5). In fact, the Õ(N 1.5) algorithmwe
described earlier for (57) is just a specialization of #PANDA. The
proof of Proposition 3.15 offers a family of similar examples. �

3.3.2 FAQ-AI on non-Boolean semirings. Finally, we put everything
together to solve the FAQ-AI problem. The only (very natural) change
is to replace the tree decompositions by their relaxed version, and
the technical details flow through.

Definition 3.17. Given an FAQ-AI query (3) whose hypergraph
is H = (V ,E = Es ∪ Eℓ = E 6∞ ∪ E∞), its relaxed #-submodular

FAQ-width, denoted by #smfwℓ (Q), is defined by

#smfwℓ (Q) := max
h∈ED6∞∩Γn |E6∞

min
(T ,χ )∈TDℓ

F

max
t ∈V (T )

h(χ (t)). (69)

When F = ∅, we define #subwℓ(Q) := #smfwℓ(Q).

Theorem 3.18. Any FAQ-AI queryQ of the form (3) on any semir-

ing can be computed in time Õ(N #smfwℓ (Q ) + |Q |).

Example 3.19. Consider the following count query:

Q() =
∑

a,b ,c ,d

R(a,b) · S(b ,c) ·T (c ,d) · 1a+b+c+d≤0. (70)

LetN := max{|R |, |S |, |T |}. For the above query faqw(Q) = faqwℓ(Q)
= #smfw(Q) = 2. Any of the previously known algorithms, in-
cluding the one from Theorem 3.5 and the one from Theorem 3.14,
would need time O(N 2) to compute Q . In Appendix A, we show
that #smfwℓ(Q) ≤ 1.5. As an example of Theorem 3.18, we also

show how to compute the above query in Õ(N 1.5). (Using the same
method, we can also solve the counting version of Q3 from Exam-
ple 1.2 in the same time.) �

4 APPLICATIONS TO RELATIONAL

MACHINE LEARNING

Our FAQ-AI formalism and solution are directly applicable to learn-
ing a class of machine learning models, which includes supervised

models (e.g., robust regression, SVM classification), and unsuper-
vised models (e.g., clustering viak-means). In this section, we show
that the core computation of these optimization problems can be
formulated in FAQ-AI over the sum-product semiring.

4.1 Training ML models over Databases

A typical machine learning model is learned over a training dataset
G. We consider the common scenario where the input data is a re-
lational database I , and the training dataset G is the result of a
feature extraction join query Q over I [1, 2, 18, 23]. Each tuple
(x ,y) ∈ G consists of a vector of features x and a label y. We
consider that the feature extraction query Q has the hypergraph
H = (V ,Es ), where Es is the set of its skeleton hyperedges.

A supervised machine learning model is a function fβ (x) with
parameters β that is used to predict the label y for unlabeled data.
The parameters are obtained by minimizing the objective function:

J (β) =
∑
(x ,y)∈G

L
(
y, fβ (x)

)
+ λΩ(β), (71)

where L(a,b) is a loss function, Ω is a regularizer, e.g., ℓ1 or ℓ2
norm, and the constant λ ∈ (0, 1) controls the influence of regular-
ization.

Previous work has shown that for polynomial loss functions,
such as square loss L(a,b) = (a−b)2, the core computation for op-
timizing the objective J (β) amounts to FAQ evaluation [2]. Inmany
instances, however, the loss function is non-polynomial, either due
to the structure of the loss, or the presence of non-polynomial com-
ponents embedded within the model structure (e.g., ReLU activa-
tion function in neural nets) [27].

Examples of commonly used non-polynomial loss functions are:
(1) hinge loss, used to learn classificationmodels like linear support
vectormachines (SVM) [27], or generalized low rank models (glrm)
with boolean principal component analysis (PCA) [35]; (2) Huber
loss, used to learn regression models that are robust to outliers [27];
(3) scalene loss, used to learn quantile regression models [35]; (4)
epsilon insensitive loss, used to learn SVM regression models [27];
and (5) ordinal hinge loss, used to learn ordinal regression models
or ordinal PCA (another glrm) [35].

Any optimization problem with the above non-polynomial loss
functions can benefit from our evaluation algorithm for FAQ-AI
by reformulating computations in the optimization algorithm as
FAQ-AI expressions over the feature extraction join query Q . We
next exemplify this reformulation for two such problems: (1) learn-
ing a robust linear regression model using Huber loss, which can
be solved with gradient-descent optimization, and (2) learning a
linear support vector machine (SVM) for binary classification us-
ing hinge loss, which can be solved with subgradient-based opti-
mization algorithms or with a cutting-plane algorithm for the pri-
mal formulation of linear SVM classification. Appendix B details
the cases of the scalene, epsilon insensitive, and ordinal hinge loss
functions.

We also consider thek-means unsupervised clustering algorithm
and give an FAQ-AI reformulation of the computation done in an
iteration of the algorithm over the datasetG.

The advantage of FAQ-AI reformulation is that the FAQ-AI ex-
pressions for the aforementioned optimization problems can be
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evaluated over relaxed tree decompositions of the feature extrac-
tion query Q and do not require the explicit materialization of its

resultG. The size of and time to computeG isO(|I |ρ∗(Q )) [29]. The
solution to these optimization problems can be computed in time
sub-linear in the size ofG, using InsideOut or #PANDA.

4.2 Robust linear regression with Huber Loss

A linear regression model is a linear function fβ (x) = β⊤x =∑
i ∈[n] βixi with features x = (x1 = 1,x2, . . . ,xn ) and parame-

ters β = (β1, . . . , βn). For a given feature vector x , the model is
used to estimate the (continuous) label y ∈ R. We learn the model
parameters by minimizing the objective J (β) with the Huber loss
function, which is defined as:

L(a,b) =
{
1
2 (a − b)2 if |a − b | ≤ 1,
1
2 |a − b | −

1
2 otherwise.

(72)

Huber loss is equivalent to the square loss when |a − b | ≤ 1
and to the absolute loss otherwise8. The advantage of Huber loss
is that it is differentiable at all points (as opposed to the absolute
loss), and more robust to outliers than the square loss.

To learn the parameters, we use batch gradient descent opti-
mization, which repeatedly updates the parameters in the direc-
tion of the gradient ∇J (β) until convergence. We provide details
on gradient-based optimization in Appendix B.1. In this section,
we focus on the core computation of the algorithm, which is the
repeated computation of the objective J (β) and its gradient ∇J (β).

The gradient ∇J (β) is the vector of partial derivatives with re-
spect to parameters (βj )j∈[n] . The objective function J (β) (with ℓ2
regularization) and its partial derivative with respect to βj are:

J (β) = 1

2

∑
(x ,y)∈G

(y − fβ (x))2 · 1 |y−fβ (x ) |≤1

+ (|y − fβ (x)| − 1) · 1 |y−fβ (x ) |>1 +
λ

2
‖β ‖22 , (73)

∂J (β)
∂βj

= λβj +
∑
(x ,y)∈G

(y − fβ (x)) · xj · 1 |y−fβ (x ) |≤1 (74)

+

1

2
(xj ·1y−fβ (x )>0 − xj ·1y−fβ (x )<0) ·1 |y−fβ (x ) |>1

= λβj +
∑
(x ,y)∈G

(y − fβ (x)) · xj · 1 |y−fβ (x ) |≤1

+ 1/2
∑
(x ,y)∈G

xj ·1y−fβ (x )>1 − 1/2
∑
(x ,y)∈G

xj ·1y−fβ (x )<−1.

Our observation is that we can compute J (β) and ∂ J (β )
∂βj

without

materializing G, by reformulating their data dependent computa-
tion as a few FAQ-AI expressions. We exemplify the rewriting for
∂ J (β )
∂βj

; the rewriting for J (β) is presented in Appendix B.3. The

8Without loss of generality, we use a simplified Huber loss. The threshold between

absolute and square loss is given by a constant δ and the absolute loss is δ2 |a−b |−
δ 2

2 .

first of the three summations in
∂ J (β )
∂βj

is rewritten as follows:∑
(x ,y)∈G

(y −
∑
i ∈[n]

βixi ) ·xj ·1 |y−fβ (x ) |≤1 (75)

=

∑
(x ,y)∈G

y ·xj ·1 |y−fβ (x ) |≤1 −
∑
i ∈[n]

∑
(x ,y)∈G

βi ·xi ·xj ·1 |y−fβ (x ) |≤1

=

∑
(x ,y)∈G

y · xj · 1y−fβ (x )≤1 · 1y−fβ (x )>0

+

∑
(x ,y)∈G

y · xj · 1y−fβ (x )≥−1 · 1y−fβ (x )<0

−
∑
i ∈[n]

∑
(x ,y)∈G

βi · xi · xj · 1y−fβ (x )≤1 · 1y−fβ (x )>0

−
∑
i ∈[n]

∑
(x ,y)∈G

βi · xi · xj · 1y−fβ (x )≥−1 · 1y−fβ (x )<0.

The four terms can be expressed asO(n) FAQ-AI expressions of
the form (3). For instance, the first part of the expression is equiv-
alent to the following FAQ-AI query:

Q() =
∑
y ,xV

y · xj · 1y−fβ (x )≤1 · 1y−fβ (x )>0︸                         ︷︷                         ︸
ligaments Eℓ

· ©­«
∏
F ∈Es

RF (xF )
ª®
¬
.

The other two summations in
∂ J (β )
∂βj

both aggregate over xj and

have one inequality that defines a ligament in Eℓ . They can be
expressed as FAQ-AI expressions. Overall, the gradient ∇J (β) can
be expressed as O(n2) FAQ-AI expressions. Appendix B.3 shows
that the same holds for J (β).

Theorem 4.1. Let I be an input database where N is the largest re-

lation in I , andQ be a feature extraction query. For any robust linear

regression model β⊤x , the objective J (β) and gradient ∇J (β) with
Huber loss can be computed in time Õ(N #smfwℓ (Q )) with #PANDA

and in time O(N faqw
ℓ
(Q ) logN ) with InsideOut.

4.3 Learning linear SVM classification models

A linear SVM classification model is used for binary classification
problems where the label y ∈ {±1}. For the features x = (x1 =
1,x2, . . . ,xn ), the model learns the parameters β = (β1, . . . , βn) of
a linear discriminant function fβ (x) = β⊤x such that fβ (x) sepa-
rates the data points inG into positive and negative classes with a
maximum margin. The parameters can be learned by minimizing
the objective function (71) with the hinge loss function:

L(a,b) = max{0, 1 − a · b}. (76)

Hinge loss is non-differentiable, and thus standard gradient de-
scent optimization is not applicable. We next discuss two alterna-
tive approaches for solving this optimization problem.

The first approach is based on the observation that the loss func-
tion is convex, and the objective admits subgradient vectors, which
generalize the standard notion of gradient. The optimization prob-
lem can be solved with subgradient based updates. Pegasos is a
well-know algorithm for this approach [33].

The alternative approach is to solve the primal formulation of
the problem, which avoids the non-differentiable objective by turn-
ing it into a constraint optimization problem with slack variables.
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Joachims proposed a cutting-plane algorithm which solves this op-
timization problem efficiently [21].

For both approaches, the number of iterations of the optimiza-
tion algorithm is independent of the size |G | of training dataset
G [21, 33]. Thus, the time complexity for finding the solution is
O(|G |).

Despite the fact that the two approaches solve the same problem,
they have been hugely influential in their own right. We therefore
consider both approaches, and show that by reformulating their
computation as FAQ-AI we can solve them asymptotically faster
than materializing the training datasetG, i.e., sublinear in |G |.

4.3.1 Subgradient-based optimization for linear SVM classification.

We first use subgradient-based optimization to compute the param-
eters of the SVM model; Appendix B.1 gives the details. The core
of the optimization is the repeated computation of the objective
and the partial derivatives in terms of (βj )j∈[n] . The objective J (β)
(with ℓ2 regularization) and the partial derivative

∂ J (β )
∂βj

are:

J (β) =
∑
(x ,y)∈G

max{0, 1 − y(β⊤x)} + λ

2
‖β ‖22 , (77)

∂J (β)
∂βj

=

∑
(x ,y)∈G

y · xj · 1y(β⊤x )≤1 + λβj . (78)

Our observation is that J (β) and ∂ J (β )
∂βj

can be reformulated as

FAQ-AI expressions and computed without materializing G. We
first rewrite the objective (derivation steps shown inAppendix B.5):

∑
(x ,y)∈G

max{0, 1 − y(β⊤x)} + λ
2
‖β ‖22 (79)

=

λ

2
‖β ‖22 +

∑
(x ,y)∈G

1y=11β⊤x ≤1

︸                  ︷︷                  ︸
FAQ-AI of the form (3)

−
n∑
i=1

∑
(x ,y)∈G

βixi1y=11β⊤x ≤1

︸                        ︷︷                        ︸
FAQ-AI of the form (3)

+

∑
(x ,y)∈G

1y=−11β⊤x ≥−1

︸                     ︷︷                     ︸
FAQ-AI of the form (3)

+

n∑
i=1

∑
(x ,y)∈G

βixi1y=−11β⊤x ≥−1

︸                           ︷︷                           ︸
FAQ-AI of the form (3)

.

Similarly,
∂ J (β )
∂βj

can be rewritten into two FAQ-AI expressions:

∑
(x ,y)∈G

y · xj · 1y(β⊤x )≤1 + λβj (80)

= λβj +
∑
(x ,y)∈G

xj · 1y=11β⊤x ≤1

︸                          ︷︷                          ︸
FAQ-AI of the form (3)

−
∑
(x ,y)∈G

xj · 1y=−11β⊤x ≥−1

︸                             ︷︷                             ︸
FAQ-AI of the form (3)

.

Theorem 4.2. Let I be an input database where N is the largest

relation in I , andQ be a feature extraction query. For any linear SVM

classification model β⊤x , the objective J (β) and gradient∇J (β)with
hinge loss can be computed in time Õ(N #smfwℓ (Q )) with #PANDA

and in timeO(N faqw
ℓ
(Q ) logN ) with InsideOut.

Algorithm 1: Training classification SVM via (82)

1 W ← ∅; // Working set

2 t ← 0;

3 repeat

4 t ← t + 1;

5 (β (t ), ξ (t )) ← argminβ ,ξ ≥0
{
1
2 ‖β ‖

2
2 +Cξ ;

6 s.t. 1
|G |

〈
β ,

∑
(x ,y)∈T yx

〉
≥ |T ||G | − ξ ,∀T ∈ W

}
;

7 T (t ) := {(x ,y) ∈ G | y
〈
β (t ),x

〉
< 1};

8 W ←W ∪ {T (t )}
9 until

|T (t ) |
|G | −

1
|G |

〈
β (t ) ,

∑
(x ,y)∈T (t ) yx

〉
≤ ξ (t ) + ϵ ;

4.3.2 Cu�ing-plane algorithm for linear SVM classification in pri-

mal space. An alternative to learning linear SVM via subgradient-
based optimization is to pose the problem as a constraint optimiza-
tion problem. The equivalent formulation for minimizing the ob-
jective (77) is the primal formulation of linear SVM [27]:

min
β ,ξx ,y ≥0

1

2
‖β ‖2 + C

|D |
∑
(x ,y)∈G

ξx ,y (81)

s.t. y fβ (x) ≥ 1 − ξx ,y , ∀(x ,y) ∈ G.

where ξx ,y are slack variables and C is the regularization parame-
ter.

The optimization problem solves for the hyperplane fβ (x) that
classifies the data points (x ,y) ∈ G into two classes, so that the
margin between the hyperplane and the nearest data point for each
class is maximized. For each (x ,y) ∈ G, the slack variable ξx ,y en-
codes how much the point violates the margin of the hyperplane.

Joachims’ cutting-plane algorithm solves (81) in linear time over
the training dataset [21]. The algorithm solves the following struc-
tural classification SVM formulation, which is equivalent to (81):

min
β ,ξ ≥0

1

2
‖β ‖2 +Cξ (82)

s.t.
1

|G |

〈
β ,

∑
(x ,y)∈T

yx

〉
≥ 1

|G | |T | − ξ , ∀T ⊆ G.

This formulation has 2 |G | constraints, one for each possible subset
T ⊆ G, and a single slack variable ξ that is shared by all constraints.

Algorithm1 presents Joachims’ cutting-plane algorithm for solv-
ing (82). It iteratively constructs a set of constraintsW, which is
a subset of all constraints in (82). In each round t , it first computes

the optimal value for β (t ) and ξ (t ) over the current working setW.

Then, it identifies the constraint T (t ) that is most violated for the
current β (t ), and adds this constraint toW. It continues untilT (t )

is violated by at most ϵ . Joachims showed that Algorithm 1 finds
the ϵ-approximate solution to (82) in O(1)-many iterations [21].
Hence |W| and the number of constraints of the optimization prob-
lem are bounded by a number independent of |G |.

Next, we consider the inner optimization problem at line 5. Al-
though |W| is small, the number n of variables can still be large.
This prohibits solving with quadratic programming as it can take
up to O(n3) [27]. Its Wolfe dual, on the other hand, is a quadratic
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program with only a constant number of variables that is inde-
pendent of n and one constraint. Let xT =

∑
(x ,y)∈T yx . We next

present the derived Wolfe dual (its derivation from (82) is in Ap-
pendix B.8):

max
α ≥0

− 1

2

〈 ∑
T ∈W

αT xT ,
∑

T ∈W
αT xT

〉
+

∑
T ∈W

|T |αT (83)

s.t.
∑

T ∈W
αT ≤

C

|G |

where α = (αT )T ∈W is the vector of constraints.

Theorem 4.3. Let I be an input database where N is the largest

relation in I , and Q be a feature extraction query. A linear SVM

classification model can be learned over the training dataset Q(I )
with Joachims’ cutting-plane algorithm in time Õ(N #smfwℓ (Q )) with
#PANDA and in time O(N faqw

ℓ
(Q ) logN ) with InsideOut.

4.4 k-means clustering

Next we consider the populark-means clustering algorithm, which
is an example of an unsupervised machine learning algorithm.

An unsupervised machine learning model is computed over a
dataset G ⊆ Rn , for which each tuple x ∈ G is a vector of fea-
tures without a label. A clustering task aims to divide G into k
clusters of “similar” data points with respect to the ℓ2 norm: G =

∪ki=1Gi , where k is a given fixed positive integer. Each cluster Gi

is represented by a cluster mean µi ∈ Rn . One of the most ubiq-
uitous clustering methods, Lloyd’s k-means clustering algorithm
(also known as the k-means method), involves the optimization
problem (1) with respect to the partition (Gi )i ∈[k] and the k means
(µi )i ∈[k]. Other norms or distance measures can be used, e.g., if we
replace ℓ2 with ℓ1-norm, then we get the k-median problem. The
subsequent development considers the ℓ2-norm.

Lloyd’s algorithm can be viewed as a special instantiation of the
Expectation-Maximization (EM) algorithm. It iteratively computes
two updating steps until convergence. First, it updates the cluster
assignments for each (Gi )i ∈[k]:

Gi =

{
x ∈ G | ‖x − µi ‖2 ≤



x − µ j

2 ,∀j ∈ [k] \ {i}} (84)

and then it updates the corresponding k-means (µi )i ∈[k]:

µi =
1

|Gi |
∑
x ∈Gi

x . (85)

Our observation is that we can reformulate the updating of the
k-means as FAQ-AI expressions, without explicitly computing the
partitioning (Gi )i ∈[k]. For a given set ofk-means (µ j )j∈[k] , let ci j (x)
be the following function:

ci j (x) =
∑
ℓ∈[n]
[(xℓ − µi ,ℓ)2 − (xℓ − µ j ,ℓ )2]

=

∑
ℓ∈[n]
[µ2i ,ℓ − 2xℓ(µi ,ℓ + µ j ,ℓ ) − µ

2
j ,ℓ ]. (86)

where µ j ,ℓ is the ℓ’th component of mean vector µ j . A data point
x ∈ G is closest to center µi if and only if ci j (x) ≤ 0 holds ∀j ∈ [k].

We use this inequality to reformulate themean vector µi asO(n)
FAQ-AI expressions. First, we express |Gi | as:

Qi () =
∑
x

©­«
∏
j∈[k]

1ci j (x )≤0
ª®
¬
©­«

∏
F ∈Es

RF (xF )
ª®
¬
. (87)

Then, for each ℓ ∈ [n], the sum ∑
x ∈Gi

xℓ can be reformulated in
FAQ-AI as follows (similarly to (4)):

Qiℓ() =
∑
x

xℓ
©­
«
∏
j∈[k]

1ci j (x )≤0
ª®
¬
©­
«

∏
F ∈Es

RF (xF )
ª®
¬
. (88)

Each component (µi ,ℓ)ℓ∈[n] is equal to the division of Qiℓ by Qi .
Overall, the mean vector µi can be computed withO(n) FAQ-AI

expressions of the form (3).

Theorem 4.4. Let I be an input database where N is the largest

relation in I , and Q be a feature extraction query where n is the

number of its variables. Each iteration of Lloyd’s k-means algorithm

can be computed in time Õ(N #smfwℓ (Q )) with #PANDA and in time

O(N faqw
ℓ
(Q ) logk−1 N ) with InsideOut .
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A MISSING DETAILS FROM SECTION 3

A.1 Proof of Proposition 3.7

Proposition 3.7. For any positive integerm, there exists an FAQ-AI

query of the form (3) for which F = ∅, faqwℓ (Q) ≥ m and it cannot

be answered in time o(N faqw
ℓ
(Q )), modulo k-sum hardness.

Proof. It is widely assumed [24, 31] that O(N ⌈k/2⌉ ) is the best
runtime for k-sum, which is the following problem: given k num-
ber sets R1, . . . ,Rk of maximum size N , determine whether there
is a tuple t ∈ R1 × · · · × Rk such that

∑
i ∈[k] ti = 0. We can re-

ducek-sum to our problem: Consider the queryQ over the Boolean
semiring:

Q() ← ©­«
∧
i ∈[k]

Ri (xi )
ª®
¬
∧ ©­«

∑
i ∈[k]

xi ≤ 0
ª®
¬
∧ ©­«

∑
i ∈[k]

xi ≥ 0
ª®
¬
. (89)

The answer toQ is true iff there is a tuple (x1, . . . ,xk ) ∈ R1×· · ·×Rk
such that

∑
i ∈[k] xi = 0. The reduction shows that our query (89)

is k-sum-hard. For this query, faqwℓ(Q) = ⌈k/2⌉. �

A.2 Proof of Proposition 3.8

Proposition 3.8 For any FAQ-AI query Q of the form (3), we have

faqwℓ(Q) ≥ 1
2 faqw(Q); in particular, when Q has no free variables

fhtwℓ (Q) ≥ 1
2 fhtw(Q).

Proof. Let (T , χ ) denote a relaxed tree decomposition of H
with fractional hypertree width faqwℓ(H). Construct a new (non-
relaxed) tree decomposition (T ′, χ ′) forH as follows. Each vertex
t in V (T ) is also a vertex in V (T ′) with χ ′(t) = χ (t). Moreover, to
each edge {s , t} ∈ E(T ) there corresponds an additional vertex st
in V (T ′) whose bag is χ ′(st) = χ (s) ∪ χ (t). As for the edge set of
T ′, for each edge {s , t} ∈ E(T ), there are two corresponding edges
in E(T ′), namely {s , st} and {t , st}. It is easy to see that (T ′, χ ′)
is a (non-relaxed) tree decomposition of H with width at most
2faqw(H). Moreover, if (T , χ ) is F -connex, then so is (T ′, χ ′). �

A.3 Proof of Proposition 3.15

Proposition 3.15.

(a) For any FAQ query Q , the following holds:

smfw(Q) ≤ #smfw(Q) ≤ faqw(Q). (90)

In particular, when Q has no free variables, we have

subw(Q) ≤ #subw(Q) ≤ fhtw(Q). (91)

(b) Furthermore, there are classes of queries Q for which the gap

between #smfw(Q) and faqw(Q) is unbounded, and so is the

gap between #subw(Q) and fhtw(Q).

Proof. First we prove part (a). The first inequality in (90) fol-
lows directly from the definitions of #smfw and smfw along with
the fact that Γn ⊆ Γn |E 6∞ . To prove the second inequality in (90), we
use the following variant of the Modularization Lemma from [6]:
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Claim 1 (Variant of the Modularization Lemma [6]). Given a hy-

pergraphH = (V = [n],E) and a set B ⊆ V, we have

max
h∈ED∩Γn |E

h(B) = max
h∈ED∩Mn

h(B), (92)

where ED is given by (6) and Mn denotes the set of all modular

functions h : 2V → R+. (A function h : 2V → R+ is modular

if h(X ) = ∑
i ∈X h(i),∀X ⊆ V.)

Proof of Claim 1. Obviously, the LHS of (92) is lowerbounded
by the RHS. Next, we prove LHS ≤ RHS. WLOG we assume B =
[k] for some k ∈ [n]. Let h∗ = argmaxh∈ED∩Γn |E h(B). Define a

function h̄ : 2V → R+ as follows:
h̄(F ) =

∑
i ∈F
(h∗([i]) − h∗([i − 1])).

Obviously h̄ ∈ Mn and h̄(B) = h∗(B). Next, we prove h̄ ∈ ED by
proving that for every F ⊆ [n] where F ⊆ E for some E ∈ E, the
following holds:

h̄(F ) ≤ h∗(F ).
The proof is by induction on |F |. The base case when |F | = 0 is
trivial. For the inductive step, consider some F where F ⊆ E for
some E ∈ E. Let j be the maximum integer in F , then by noting
that |F ∩ [j − 1]| < |F |, we have
h̄(F ) = h∗([j]) − h∗([j − 1]) +

∑
i ∈F−{j }

(h∗([i]) − h∗([i − 1]))

= h∗([j]) − h∗([j − 1]) + h̄(F ∩ [j − 1])
= h∗(F ∪ [j − 1]) − h∗([j − 1]) + h̄(F ∩ [j − 1])
≤ h∗(F ∪ [j − 1]) − h∗([j − 1]) + h∗(F ∩ [j − 1])
≤ h∗(F ).

The first inequality above is by induction hypothesis, and the sec-
ond inequality follows from the fact that h∗ is a E-polymatroid (re-
call Definition 3.12). Both steps rely on the fact that F ∩ [j − 1] ⊆ E
for some E ∈ E. Consequently, h̄ ∈ ED ∩Mn . Since h̄(B) = h∗(B),
this proves Claim 1. �

Now we prove the second inequality in (90):

#smfw(Q) = max
h∈ED6∞∩Γn |E6∞

min
(T ,χ )∈TDF

max
t ∈V (T )

h(χ (t))

(Max-min inequality) ≤ min
(T ,χ )∈TDF

max
h∈ED6∞∩Γn |E6∞

max
t ∈V (T )

h(χ (t))

= min
(T ,χ )∈TDF

max
t ∈V (T )

max
h∈ED6∞∩Γn |E6∞

h(χ (t))

(Claim 1) = min
(T ,χ )∈TDF

max
t ∈V (T )

max
h∈ED6∞∩Mn

h(χ (t))

(Strong duality in LP) = min
(T ,χ )∈TDF

max
t ∈V (T )

ρ∗E 6∞ (χ (t))

= faqw(Q).
The fact that maxh∈ED6∞∩Mn

h(χ (t)) = ρ∗E 6∞ (χ (t)) follows from the

two sides being dual linear programs. (Recall the definition of ρ∗

from Section 2.1.)
Now, we prove part (b) of PropositionA.3. In [6], we constructed

a class of graphs/queries where the gap between fhtw and subw is
unbounded. We will re-use the same construction here and prove
that the upperbound on subw that we proved in [6] is also an up-
perbound on #subw. The upperbound proof is going to be different

from [6] though since here we can only use E-polymatroid prop-
erties to prove the bound (recall Definition 3.12).

Given integers m and k , consider a graph H = (V ,E) which
is an “m-fold 2k-cycle”: The vertex set V := I1 ∪ I2 ∪ . . . ∪ I2k is
a disjoint union of 2k-sets of vertices. Each set Ij has m vertices

in it, namely Ij := {I 1j , I
2
j , . . . , I

m
j }. There is no edge between any

two vertices within the set Ij for every j ∈ [2k], namely Ij is an
independent set. The edge set E of the hypergraph is the union of
2k complete bipartite graphs Km,m :

E := (I1 × I2) ∪ (I2 × I3) ∪ · · · ∪ (I2k−1 × I2k ) ∪ (I2k × I1).
Finally consider an FAQ queryQ that has a finite-sized input factor
RK for every K ∈ E, i.e. E 6∞ = E and E∞ = ∅. (Recall notation
from Section 2.2.) Moreover, assumeQ has no free variables, hence
faqw(Q) = fhtw(Q) and #smfw(Q) = #subw(Q).

We proved in [6] that fhtw(Q) ≥ 2m. Next we prove that #subw(Q)
≤m(2− 1/k). Let h be any function in ED 6∞ ∩ Γn |E 6∞ . We recognize
two cases:

• Case 1:h(Ii ) ≤ θ for some i ∈ [2k]. WLOG assumeh(I1) ≤ θ .
Consider the tree decomposition

I1 ∪ I2 ∪ I3 I1 ∪ I3 ∪ I4 I1 ∪ I2k−1 ∪ I2k

For bag B = I1 ∪ Ii ∪ Ii+1, using E 6∞-polymatroid properties
(Definition 3.12), we have

h(B) ≤ h(I1) + h(Ii ∪ Ii+1)

≤ h(I1) +
m∑
j=1

h
({
I
j
i , I

j
i+1

})

≤ θ +m.

• Case 2: h(Ii) > θ for all i ∈ [2k]. Consider the tree decom-
position

I1 ∪ I2 ∪ · · · ∪ Ik+1 Ik+1 ∪ · · · ∪ I2k ∪ I1

Bag B1 Bag B2

For convenience, given any vertex I
j
i , define the vertex set

V j
i as follows:

V j
i := I1 ∪ I2 ∪ . . . ∪ Ii−1 ∪

{
I 1i , I

2
i , . . . , I

j−1
i

}
.

From E 6∞-polymatroid properties, we have

h(B1) = h(I1 ∪ I2) +
k+1∑
i=3

m∑
j=1

h
({
I
j
i

}
∪V j

i | V
j
i

)

≤ h(I1 ∪ I2) +
k+1∑
i=3

m∑
j=1

h
({
I
j
i , I

j
i−1

}
|
{
I
j
i−1

})

= h(I1 ∪ I2) +
k+1∑
i=3

m∑
j=1

h
({
I
j
i , I

j
i−1

})
−
k+1∑
i=3

m∑
j=1

h
({
I
j
i−1

})

≤ h(I1 ∪ I2) +
k+1∑
i=3

m∑
j=1

h
({
I
j
i , I

j
i−1

})
−
k+1∑
i=3

h(Ii−1)

≤
k+1∑
i=2

m∑
j=1

h
({
I
j
i , I

j
i−1

})
−
k+1∑
i=3

h(Ii−1)

≤ km − (k − 1)θ .
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In a symmetric way, we can also show that h(B2) ≤ km − (k − 1)θ .
By setting θ = (1 − 1/k)m, we prove that #subw(Q) ≤ m(2 − 1/k).
Since fhtw(Q) ≥ 2m, this proves part (b) of the proposition. �

A.4 Proof of Theorem 3.14

Theorem 3.14. Any FAQ query Q of the form (2) on any semiring

can be answered in time Õ(N #smfw(Q )
+ |Q |).

Proof. The PANDA algorithm [6] takes as input a disjunctive
Datalog query of the form∨

B∈B
GB (xB ) ←

∧
K ∈E

RK (xK ). (93)

The above query has an input relation RK corresponding to each
hyperedge K ∈ E in the query’s hypergraph H = (V,E). The
output to the above query is a collection of tablesGB , one for each
“goal” (or “target”) B in the collection of goals B. The output tables
(GB )B∈B must satisfy the logical implication in (93): In particular,
for each tuplexV that satisfies the conjunction

∧
K ∈E RK (xK ), the

disjunction
∨
B∈B GB (xB ) must hold. Query (35) is an example of

(93). A disjunctive Datalog query (93) can have many valid outputs.

The PANDA algorithm computes one such output in time Õ(N e ),
where

e = max
h∈ED6∞∩Γn

min
B∈B

h(B). (94)

(Recall notation from Section 2.2.)
Inwhat follows,we describe a variant ofPANDA, called #PANDA,

that takes a disjunctive Datalog query (93), and computes the fol-
lowing:

• A collection of tables (GB )B∈B that form a valid output to
query (93), i.e. that satisfy the logical implication in (93).
• Moreover, associated with each output table GB , #PANDA

additionally computes a collectionof “filter” tables
(
F
(B)
K

)
K ∈E

,

one table F
(B)
K

for each hyperedge K ∈ E in the input hy-
pergraph H . The output tables GB along with the associ-

ated filters
(
F
(B)
K

)
K ∈E

satisfy the following condition: For

each tuple xV that satisfies the conjunction
∧
K ∈E RK (xK ),

there is exactly one target B ∈ B where the conjunction∧
K ∈E

F
(B)
K
(xK ) holds, and for that target B,GB (xB ) holds as

well. In particular, the following equivalences hold:

∨
B∈B

+

[ ∧
K ∈E

F
(B)
K
(xK )

]
≡

∧
K ∈E

RK (xK ), (95)

[ ∧
K ∈E

F
(B)
K
(xK )

]
≡

[
GB (xB ) ∧

∧
K ∈E

F
(B)
K
(xK )

]
, ∀B ∈ B, (96)

where
∨
+ above denotes the exclusive OR.

#PANDA computes the above output tables (GB )B∈B and((
F
(B)
K

)
K ∈E

)
B∈B

in time Õ(N e ′) where

e ′ = max
h∈ED6∞∩Γn |E6∞

min
B∈B

h(B). (97)

Now we briefly explain how to tweak the PANDA algorithm
into #PANDA satisfying the above characteristics. We refer the
reader to [6] for more details about PANDA. At a high level, the

PANDA algorithm starts with proving an exact upperbound on e
from (94) using a sequence of proof steps, called the proof sequence.
Then PANDA interprets each step in the proof sequence as a rela-
tional operator, and then uses this sequence of relational opera-

tors as a query plan to actually compute the query in time Õ(N e ).
One of the proof steps used in PANDA is the decomposition step

h(Y ) → h(X ) + h(Y |X ) for some X ⊆ Y ⊆ V . The relational op-
erator corresponding to this decomposition step is the “partition-
ing” operator, in which we take an input (or intermediate) table
RY and partition it into a small number k = O(log |R |) of tables
R
(1)
Y
, . . . ,R

(k)
Y

, based on the degrees of variables in Y with respect
to variables in X ⊆ Y . In particular, define the degree of Y w.r.t. a
tuple tX ∈ πX RY as

degRY (Y |tX ) :=
��{t ′Y ∈ RY | t ′X = tX }�� (98)

In the partitioning step, we partition tuples tX ∈ πX RY intok buck-
ets based on degRY (Y |tX ) and partition RY accordingly. After par-
titioning, PANDA creates k independent branches of the problem,

where in the j-th branch, RY is replaced by R
(j)
Y
, for each j ∈ [k].

PANDA continues on each branch independently and end up com-
puting a target GB for some B ∈ B that is potentially different for
each branch.

From the proof sequence construction described in [6], we note
the following: If the constructed proof sequence that is used to
prove the bound on e in (94) contains a decomposition steph(Y ) →
h(X )+h(Y |X ), then the proof of the bound on e must have relied on
some submodularity constraint on h of the form h(X )+h(Z ∪Y ) ≤
h(Y ) + h(Z ∪ X ) for some Z ⊆ V where Z ∩ Y = ∅. However, the
new bound (97) used in #PANDA only relies on submodularities
h(X ) + h(Z ∪ Y ) ≤ h(Y ) + h(Z ∪ X ) where X ⊆ K for some K ∈ E.
(Recall Γn |E 6∞ from Definition 3.12.) Therefore, in #PANDA, when-

ever we apply a partitioning step of RY into R
(1)
Y
, . . . ,R

(k)
Y

based on

the degrees degRY (Y |tX ) of tX ∈ πX RY , we can add πXR
(j)
Y

into

the filter F
(B)
K

for someK ∈ E, i.e. we can set F (B)
K
← F

(B)
K

⋉πX R
(j)
Y

on the j-th branch. Semijoin-reducing πX R
(j)
Y

into some F
(B)
K

is pos-
sible thanks to the fact that X ⊆ K for some K ∈ E. Moreover, this

semijoin-reduction of filters F
(B)
K

maintains (95). (Initially, we start

with filters F
(B)
K

that are identical to the input relations RK , which

trivially satisfies (95).)
Now that we have described the #PANDA algorithm satisfying

the above properties, we explain how to use it as a blackbox to

solve an FAQ query Q of the form (2) in time Õ(N #smfw(Q )
+ |Q |).

Following the same notation as in the proof of Theorem 3.11, let

M be the collection of allmaps β : TDℓ

F
→ 2V such that β(T , χ ) =

χ (t) for some t ∈ V (T ); in other words, β selects one bag χ (t) out of
each tree decomposition (T , χ ). For each β ∈ M , we use #PANDA
to solve the following rule:

∨
(T ,χ )∈TDF

+

[
Gβ (T ,χ ) ∧

∧
K ∈E

F
(β (T ,χ ))
K

]
≡

∧
K ∈E

RK . (99)

The solutions collectively satisfy the following:

∧
β ∈M

∨
(T ,χ )∈TDF

+

[
Gβ (T ,χ ) ∧

∧
K ∈E

F
(β (T ,χ ))
K

]
≡

∧
K ∈E

RK .
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Nowwe distribute the outer conjunction
∧
β ∈M over the exclusive

OR
∨
+ , which results in an exclusive OR outside and a big conjunc-

tion inside. Using the same diagonalization argument from [6], we
know that for this inner conjunction there must exist some tree de-
composition (T̄ , χ̄ ) ∈ TDF where the conjunction contains G χ̄ (t )
for all t ∈ V (T̄ ). Thanks to (96), we can keep those terms G χ̄ (t )
in the conjunction and drop out all other terms Gβ (T ,χ ) to get an
equivalent conjunction. We interpret the resulting conjunction as
an FAQ query: The input factors to this FAQ query are all filter

F
(β (T ,χ ))
K

in the conjunction along with G χ̄ (t ) for all t ∈ V (T̄ ); all
otherGβ (T ,χ ) have been dropped. Nowwe solve this FAQ query by

running InsideOut over the tree decomposition (T̄ , χ̄ ). We repeat
the above for every conjunction. Afterwards, because different con-
junctions are joined together with an exclusive OR, we can simply
add up individual query results.

From (97), the total runtime is Õ(Nw
+ |Q |), where

w = max
β ∈M

max
h∈ED6∞∩Γn |E6∞

min
(T ,χ )∈TDF

h(β(T , χ )) (100)

= max
h∈ED6∞∩Γn |E6∞

max
β ∈M

min
(T ,χ )∈TDF

h(β(T , χ )) (101)

= max
h∈ED6∞∩Γn |E6∞

min
(T ,χ )∈TDF

max
t ∈V (T )

h(χ (t)) (102)

= #smfw(Q). (103)

�

A.5 Proof of Theorem 3.18

Theorem3.18.Any FAQ-AI queryQ of the form (3) on any semiring

can be computed in time Õ(N #smfwℓ (Q ) + |Q |).
The proof is very similar to that of Theorem 3.14. The key dif-

ference is that instead of running InsideOut on individual FAQ
queries obtained after applying #PANDA, we now run the InsideOut
variant from Theorem 3.5. The proof is thus omitted.

A.6 More details on Example 3.19

Consider the count query from Example 3.19:

Q() =
∑

a,b ,c ,d

R(a,b) · S(b ,c) ·T (c ,d) · 1a+b+c+d≤0. (104)

First we prove that #smfwℓ(Q) ≤ 1.5. Here F = ∅. We will use

two relaxed tree decompositions in TDℓ

F
: The first (T1, χ1) has two

bags {a,b ,c} and {c ,d}. The second (T2, χ2) has two bags {a,b} and
{b ,c ,d}. (Both are relaxed TDs because the ligament edge 1a+b+c+d≤0
is not contained in any bag; recall Definition 3.3.) Following (69),
for each h ∈ ED6∞ ∩ Γn |E 6∞ , we will pick one TD or the other. In

particular, given some h ∈ ED6∞ ∩ Γn |E 6∞ :

• If h(b) ≥ 1/2, then h(bc |b) ≤ 1/2. We pick (T1, χ1). From
E 6∞-polymatroid properties (Definition 3.12), we have

h(abc) = h(ab)+ h(abc |ab) ≤ h(ab)+ h(bc |b) ≤ 1.5,

h(cd) ≤ 1.

• If h(b) < 1/2, we pick (T2, χ2).

h(ab) ≤ 1,

h(bcd) = h(b)+ h(bcd |b) ≤ h(b)+ h(cd) ≤ 1.5.

This proves that #smfwℓ(Q) ≤ 1.5.
Finally, as a special case of #PANDA, we explain how to solve the

above query in time Õ(N 1.5) (where recall N := max{|R |, |S |, |T |}).
Let

Sℓ :=
{
(b , c) ∈ S | |{c ′ | (b ,c ′) ∈ S}| ≤

√
N

}
,

Sh := S \ Sℓ .

Now we can write

Q() =

∑
a,b ,c ,d

R(a,b) ·
(
Sℓ(b ,c) + Sh(b ,c)

)
·T (c ,d) · 1a+b+c+d≤0

= Qℓ() +Qh(), where
Qℓ() :=

∑
a,b ,c ,d

R(a,b) · Sℓ(b ,c)︸             ︷︷             ︸
U (a,b ,c)

·T (c ,d) · 1a+b+c+d≤0,

Qh() :=
∑

a,b ,c ,d

R(a,b) · Sh (b ,c) ·T (c ,d)︸             ︷︷             ︸
W (b ,c ,d )

·1a+b+c+d≤0.

Note that both U and W above have sizes ≤ N 1.5. Using the al-

gorithm from the proof of Theorem 3.5, Qℓ can be answered in

time O(N 1.5 logN ) using the relaxed TD (T1, χ1), while Qh can be
answered in the same time using (T2, χ2).

B RELATIONAL MACHINE LEARNING

B.1 Gradient-based Optimization

In this section, we overview gradient-based optimization algorithms
for convex and differentiable objective functions of the form (71).
A gradient-based optimization algorithm employs the first-order
gradient information to optimize J (β). It repeatedly updates the
parameters β by some step size α in the direction of the gradient
∇J (β) until convergence. To guarantee convergence, it is common
to use backtracking line search to ensure that the step size α is suf-
ficiently small to decrease the loss for each step. Each update step
requires two computations: (1) Point evaluation: Given θ , compute
the scalar J (θ ); and (2)Gradient computation: Given θ , compute the
vector ∇J (θ ).

There exist several variants of gradient descent algorithms, e.g.,
batch gradient descent or stochastic gradient descent, as well as
many different algorithms to choose a valid step size [27]. For this
work, we consider the batch gradient descent (BGD) algorithm
with the Armijo backtracking line search condition, as depicted
in Algorihtm 2. A common choice for setting the step size is a
function that is inversely related to number of iterations of the
algorithm, for instance α = 1

λt
at iteration t , where λ is the regu-

larization parameter from (71) [33].

B.1.1 Subgradient Descent. If the objective function J (β) is con-
vex but not differentiable, the gradient ∇J (β) is not defined. Such
objective functions do, however, admit a subgradient, which can be
used in subgradient-based optimization algorithms. Algorihtm 2
naturally captures the batch subgradient-descent algorithm, if the
parameters are updated in the direction of the subgradient as op-
posed to the gradient.
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Algorithm 2: BGD with Armijo line search.

1 β ← a random point;

2 while not converged yet do

3 α ← next step size;

4 d ← ∇J (β);
5 // Line search with Armijo condition;

6 while
(
J (β − αd) ≥ J (β) − α

2 ‖d ‖
2
2

)
do

7 α ← α/2;
8 end

9 β ← β − αd ;
10 end

A popular application for subgradient-descent optimization al-
gorithms is the learning of linear SVM models. One such algo-
rithm is the Pegasos algorithm [33], which showed that subgra-
dient methods can learn the parameters of the model significantly
faster than other approaches, including Joachims’ cutting plane al-
gorithm [21].

B.2 Other non-polynomial loss functions

In this section, we overview the following non-polynomial loss
functions, which were introduced in Section 4: (1) epsilon insensi-
tive loss; (2) ordinal hinge loss; and (3) scalene loss. For each func-
tion, we define the loss function L, the corresponding objective

function J (β), and the partial (sub)derivative
∂ J (β )
∂βj

which is used

in (sub)gradient-based optimization algorithms. In the derivations
for the objective J (β), we will focus on the loss function and ignore
the regularizer for better readability.

As in Section 4, the objective and (sub)dervative can be reformu-
late into a few FAQ-AI expressions of the form (3). Instead of writ-
ing out the expressions explicitly, we annotate those terms that can
be reformulated. The actual reformulation should be clear from the
examples in Section 4 and Appendix B.3.

Epsilon insensitive loss. The epsilon insensitive loss function [27]
is defined as:

L(a,b) =
{
0 if |a − b | ≤ ϵ
|a − b | − ϵ otherwise

This loss function is used to learn SVM regression models. We
consider learning a linear regression model fβ (x) = β⊤x . The ob-
jective function and the corresponding partial subderivative with
respect to βj are given by:

J (β) =
∑
(x ,y)∈G

(|y − β⊤x | − ϵ) · 1 |y−fβ (x ) |>ϵ

=

∑
(x ,y)∈G

(y − β⊤x − ϵ) · 1y−fβ (x )>ϵ

︸                                        ︷︷                                        ︸
O (n) FAQ-AI queries of the form (3)

+

+

∑
(x ,y)∈G

(β⊤x − y − ϵ) · 1fβ (x )−y>ϵ

︸                                        ︷︷                                        ︸
O (n) FAQ-AI queries of the form (3)

∂J (β)
∂βj

=

∑
(x ,y)∈G

xj · 1fβ (x )−y<ϵ

︸                        ︷︷                        ︸
FAQ-AI query of form (3)

−
∑
(x ,y)∈G

xj · 1y−fβ (x )>ϵ

︸                        ︷︷                        ︸
FAQ-AI query of form (3)

The objective and partial subderivative can thus be reformu-
lated asO(n) FAQ-AI expressions.

Ordinal hinge loss. The ordinal hinge loss [35] is defined as:

L(a,b) =
a−1∑
t=1

max(0, 1 − b + t) +
d∑

t=a+1

max(0, 1 + b − t)

=

d∑
t=1

max(0, 1 − b + t) · 1t<a +max(0, 1 + b − t) · 1t>a

=

d∑
t=1

(1 − b + t) · 1t<a · 1b<t+1 + (1 + b − t) · 1t>a · 1b>1−t

The loss function is used to learn ordinal regression models or
ordinal PCA [35]. A linear ordinal regression model is linear func-
tion fβ (x) = β⊤x which predicts an ordinal label y ∈ [d]. The
objective function and the partial subderivative with respect to βj
are given by:

J (β) =
d∑
t=1

∑
(x ,y)∈G

(1 − fβ (x) + t) · 1fβ (x )<1+t · 1y<t

︸                                                  ︷︷                                                  ︸
O (n) FAQ-AI queries of form (3)

+

d∑
t=1

∑
(x ,y)∈G

(1 + fβ (x) − t) · 1fβ (x )>t−1 · 1y>t

︸                                                  ︷︷                                                  ︸
O (n) FAQ-AI queries of form (3)

∂J (β)
∂βj

=

d∑
t=1

∑
(x ,y)∈G

xj · 1fβ (x )>t−1 · 1y>t

︸                                 ︷︷                                 ︸
FAQ-AI query of form (3)

−
d∑
t=1

∑
(x ,y)∈G

xj · 1fβ (x )<1+t · 1y<t

︸                                 ︷︷                                 ︸
FAQ-AI query of form (3)

The objective and partial subderivative can thus be reformu-
lated asO(d · n) FAQ-AI expressions.

Scalene loss. The scalene loss function [35] is defined as:

L(a,b) = α ·max(0,a − b) + (1 − α) ·max(0,b − a)
= α · (a − b) · 1a>b + (1 − α) · (b − a) · 1b>a

where α ∈ (0, 1) is a constant.
The loss function is used to learn quantile regression models.

We again consider a linear regression model fβ (x) = β⊤x . The
objective function and the partial subderivative with respect to βj
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are given by:

J (β) = α
∑
(x ,y)∈G

(y − fβ (x)) · 1y>fβ (x )

︸                                 ︷︷                                 ︸
O (n) FAQ-AI queries of form (3)

+ (1 − α)
∑
(x ,y)∈G

(fβ (x) − y) · 1fβ (x )>xy

︸                                  ︷︷                                  ︸
O (n) FAQ-AI queries of form (3)

∂J (β)
∂βj

= (1 − α)
∑
(x ,y)∈G

xj · 1fβ >y

︸                 ︷︷                 ︸
FAQ-AI query of form (3)

−α
∑
(x ,y)∈G

xj · 1y>fβ (x )

︸                     ︷︷                     ︸
FAQ-AI query of form (3)

The objective and partial subderivative can thus be reformu-
lated as O(n) FAQ-AI expressions.

B.3 Reformulating the objective with Huber

loss into FAQ-AI expressions

We consider the objective J (β) with Huber loss for linear regres-
sion models as defined in Section 4.2, and show how it can be re-
formulated into O(n2) FAQ-AI expressions of the form (3). The ob-
jective J (β) is defined as follows:

J (β) = 1

2

∑
(x ,y)∈G

(y − fβ (x))2 · 1 |y−fβ (x ) |≤1

+ (|y − fβ (x)| − 1) · 1 |y−fβ (x ) |>1 +
λ

2
‖β ‖22

First, we consider the case where |y − fβ (x)| ≤ 1, i.e. the square

loss term of J (β). For ease of notation, let c1(y,x) = y − fβ (x).∑
(x ,y)∈G

(y − fβ (x))2 · 1c1(y ,x )

=

∑
(x ,y)∈G

y2 − 2y fβ (x) + (fβ (x))2 · 1c1(y ,x )

=

∑
(x ,y)∈G

y2 · 1c1(y ,x ) − 2
∑
(x ,y)∈G

y · fβ (x) · 1c1(y ,x )

+

∑
(x ,y)∈G

(fβ (x))2 · 1c1(y ,x )

=

∑
(x ,y)∈G

y2 · 1c1(y ,x ) − 2
∑
i ∈[n]

∑
(x ,y)∈G

βi · y · xi · 1c1(y ,x )

+

∑
i ∈[n]

∑
j∈[n]

∑
(x ,y)∈G

βi · βj · xi · xj · 1c1(y ,x )

=

∑
(x ,y)∈G

y2 · 1y−fβ (x )≤1 · 1y−fβ (x )≥0

+

∑
(x ,y)∈G

y2 · 1y−fβ (x )≥−1 · 1y−fβ (x )<0

− 2
∑
i ∈[n]

∑
(x ,y)∈G

βi · y · xi · 1y−fβ (x )≤1 · 1y−fβ (x )≥0

− 2
∑
i ∈[n]

∑
(x ,y)∈G

βi · y · xi · 1y−fβ (x )≥−1 · 1y−fβ (x )<0

+

∑
i ∈[n]

∑
j∈[n]

∑
(x ,y)∈G

βi · βj · xi · xj · 1y−fβ (x )≤1 · 1y−fβ (x )≥0

+

∑
i ∈[n]

∑
j∈[n]

∑
(x ,y)∈G

βi · βj · xi · xj · 1y−fβ (x )≥−1 · 1y−fβ (x )<0

Each of summation over the training dataset G in the final re-
formulation above can be expressed as one FAQ-AI query with two
ligament hyperedges. For instance, the first summation over G is
equivalent to the following FAQ-AI expression:

Q() =
∑
y ,xV

y2 · 1y−fβ (x )≤1 · 1y−fβ (x )≥0︸                         ︷︷                         ︸
ligaments in Eℓ

· ©­
«

∏
F ∈Es

RF (xF )
ª®
¬

The absolute loss function for the case |y − fβ (x)| > 1 can be

reformulated similarly:∑
(x ,y)∈G

(|y − fβ (x)| − 1) · 1 |y−fβ (x ) |>1

=

∑
(x ,y)∈G

(y − fβ (x) − 1) · 1y−fβ (x )>1

+

∑
(x ,y)∈G

(fβ (x) − y − 1) · 1y−fβ (x )<−1

=

∑
(x ,y)∈G

y · 1y−fβ (x )>1 −
∑
i ∈[n]

∑
(x ,y)∈G

βi · xi · 1y−fβ (x )>1

−
∑
(x ,y)∈G

y · 1y−fβ (x )<−1 +
∑
i ∈[n]

∑
(x ,y)∈G

βi · xi · 1y−fβ (x )<−1

−
∑
(x ,y)∈G

1y−fβ (x )>1 −
∑
(x ,y)∈G

1y−fβ (x )<−1

All of these terms can be reformulated as O(n) FAQ-AI expres-
sions of the form 3.

Overall, the objective J (β) with Huber loss for learning robust
linear regression models can be computed with O(n2) FAQ-AI ex-
pressions, and without materializing the training datasetG.

B.4 Proof of Theorem 4.1

Theorem 4.1. Let I be an input database where N is the largest re-

lation in I , andQ be a feature extraction query. For any robust linear

regression model β⊤x , the objective J (β) and gradient ∇J (β) with
Huber loss can be computed in time Õ(N #smfwℓ (Q )) with #PANDA

and in time O(N faqw
ℓ
(Q ) logN ) with InsideOut.

Proof. Let n be the number of variables in Q . We show in Sec-
tion 4.2 and Appendix B.3 that we can rewrite of the objective J (β)
and gradient ∇J (β) into O(n2) FAQ-AI expressions with at most
|Eℓ | = 2 ligament hyperedges. The overall runtime bound for com-
puting J (β) and ∇J (β) with #PANDA follows from Theorem 3.18,
which states that #PANDA can compute each FAQ-AI expression

in time Õ(N #smfwℓ (Q )).
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The overall runtime bound for computing J (β) and ∇J (β)with
InsideOut follows from Theorem 3.5, which states that InsideOut
can compute each FAQ-AI expression in time O(N faqw

ℓ
(Q ) logN ).

�

B.5 Derivation steps for reformulating (79)

We show the derivation steps of the reformulation of (79).

∑
(x ,y)∈G

max{0, 1 − y(β⊤x)} + λ
2
‖β ‖22 (105)

=

λ

2
‖β ‖22 +

∑
(x ,y)∈G

(1 − y(β⊤x)) · 1y(β⊤x )≤1 (106)

=

λ

2
‖β ‖22 +

∑
(x ,y)∈G

(1 − (β⊤x)) · 1y=11β⊤x ≤1

+

∑
(x ,y)∈G

(1 + (β⊤x)) · 1y=−11β⊤x ≥−1

=

λ

2
‖β ‖22 +

∑
(x ,y)∈G

1y=11β⊤x ≤1

︸                  ︷︷                  ︸
query of the form (3)

−
n∑
i=1

∑
(x ,y)∈G

βixi1y=11β⊤x ≤1

︸                        ︷︷                        ︸
query of the form (3)

+

∑
(x ,y)∈G

1y=−11β⊤x ≥−1

︸                     ︷︷                     ︸
query of the form (3)

+

n∑
i=1

∑
(x ,y)∈G

βixi1y=−11β⊤x ≥−1

︸                           ︷︷                           ︸
query of the form (3)

.

B.6 Proof of Theorem 4.2

Theorem 4.2. Let I be an input database where N is the largest

relation in I , andQ be a feature extraction query. For any linear SVM

classification model β⊤x , the objective J (β) and gradient∇J (β)with
hinge loss can be computed in time Õ(N #smfwℓ (Q )) with #PANDA

and in timeO(N faqw
ℓ
(Q ) logN ) with InsideOut.

Proof. Let n be the number of variables in Q . We show in Sec-
tion 4.3.1 that J (β) and ∇J (β) can be rewritten into O(n) FAQ-AI
expressions with a single ligament hyperedge (i.e. |Eℓ | = 1). The
overall runtime bound for computing J (β)and∇J (β)with #PANDA
follows from Theorem 3.18, which states that #PANDA can com-
pute each FAQ-AI query in time Õ(N #smfwℓ (Q )). The runtime for
computing J (β)and∇J (β)with InsideOut follows fromTheorem 3.5:

This is O(N faqw
ℓ
(Q ) · logN ) for a FAQ-AI query Q . �

B.7 Proof of Theorem 4.3

Theorem 4.3. Let I be an input database where N is the largest

relation in I , and Q be a feature extraction query. A linear SVM

classification model can be learned over the training dataset Q(I )
with Joachims’ cutting-plane algorithm in time Õ(N #smfwℓ (Q )) with
#PANDA and in time O(N faqw

ℓ
(Q ) logN ) with InsideOut.

Proof. Recall that for each iteration t of Algorithm 1, we add

one set T (t ) toW, and T (t ) is associated with a coefficient vector
β (t ). Our main observation is that we do not have to materialize

the set T (t ) , since it is completely determined by the data and the

coefficient vector β (t ). Thus, instead of storingT (t ) we can simply

store β (t ) and reformulate the data dependent term xT (t ) in (83) as
a computation over G:

∀T (t ) ∈ W : xT (t ) =
∑

(x ,y)∈T (t )
yx =

∑
(x ,y)∈G

yx · 1y〈β (t ) ,x 〉<1.

The vector xT (t ) has size n. For each j ∈ [n], we can compute
the j’th component of xT (t ) as the summation of the following two
FAQ-AI expressions, which are of form (3):

Q1() =
∑
xV ,y

y · xj · 1y=1 · 1∑
j∈[n] β

(t )
j ·x j<1

· ©­
«

∏
F ∈Es

RF (xF )
ª®¬
,

Q2() =
∑
xV ,y

y ·xj ·1y=−1 ·1∑
j∈[n] β

(t )
j ·x j>−1

· ©­
«

∏
F ∈Es

RF (xF )
ª®¬
.

Q1 andQ2 have a single ligament hyperedge (i.e. |Eℓ | = 1). The-
orem 3.18 states that #PANDA computes Qi for i ∈ [2] in time

Õ(N #smfwℓ (Qi )). Consequently, the optimization problem at line 5

of Algorithm 1 can be computed in time Õ(N #smfwℓ (Qi )). This de-
termines the runtime of Algorithm 1.

Using InsideOut, the runtime of Algorithm 1 follows from The-

orem 3.5: This is O(N faqw
ℓ
(Qi ) logN ) for Qi . �

B.8 Wolfe dual for optimization problem at

line 5 of Algorithm 1

Weconsider the inner optimizationproblem at line 5 of Algorithm1,
show how to derive the Wolfe dual (83) from the structural SVM
classification formulation (82). Recall that xT =

∑
(x ,y)∈T yx , the

inner optimization problem at line 5 of Algorithm 1 is of the form:

min
β ,ξ

1

2
‖β ‖2 +Cξ (107)

s. t. 〈β ,xT 〉 ≥ |T | − |G |ξ T ∈ W
ξ ≥ 0.

The Lagrangian function if this optimization problem is:

L(β , ξ ,α ,γ )

=

1

2
‖β ‖2 +Cξ +

∑
T ∈W

αT (|T | − |G |ξ − 〈β ,xT 〉) − γξ

=

1

2
‖β ‖2 −

〈
β ,

∑
T ∈W

αT xT

〉
+

∑
T ∈W

|T |αT

+

(
C − |G |

∑
T ∈W

αT − γ
)
ξ .

where α = (αT )T ∈W and γ are Lagrange multipliers.
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Since the Lagrangian is convex and continuously differentiable,
we can define the Wolfe dual as the following optimization prob-
lem:

max
β ,ξ

L(β , ξ ,α ,γ ) (108)

s. t. ∇βL = β −
∑

T ∈W
αT xT = 0

∇ξ L = C − |G |
∑

T ∈W
αT − γ = 0

α ≥ 0,γ ≥ 0.

The optimal condition for β is β =
∑
T ∈W αT xT . We use this

equality to rewrite the above dual formulation and attain the opti-
mization problem (83) from Section 4.3.2:

max
α ≥0

− 1

2

〈 ∑
T ∈W

αT xT ,
∑

T ∈W
αT xT

〉
+

∑
T ∈W

|T |αT (109)

s.t.
∑

T ∈W
αT ≤

C

|G |

B.9 Proof of Theorem 4.4

Theorem 4.4. Let I be an input database where N is the largest

relation in I , and Q be a feature extraction query where n is the

number of its variables. Each iteration of Lloyd’s k-means algorithm

can be computed in time Õ(N #smfwℓ (Q )) with #PANDA and in time

O(N faqw
ℓ
(Q ) logk−1 N ) with InsideOut.

Proof. We shown in Section 4.4 that eachmean vector (µ j )j∈[k]
can be computed with O(n) FAQ-AI expression of the form (3),
where each query has |Eℓ | = k ligament hyperedges. For #PANDA,
the overall runtime to update allk-means follows fromTheorem3.18
(respectively Theorem 3.5), which states that the algorithm can

compute each FAQ-AI expression of form (3) in time Õ(N #smfwℓ (Q )).
Using InsideOut, the runtime follows fromTheorem3.5: Any FAQ-AI

queryQ of form (3) can be computed in timeO(N faqw
ℓ
(Q ) logk−1 N ).

�

C RECOVERING TWO EXISTING RESULTS

In this sectionwe review two prior results concerned with the eval-
uation of queries with inequalities: the evaluation of Core XPath
queries over XMLdocuments via relational encoding in the pre/post
plane and the exact inference for IQ queries with inequality joins
over probabilistic databases. Our main observation is that their lin-
earithmic complexity is due to the same structural property behind
relaxed tree decompositions: Such queries admit trivially a relaxed
tree decomposition, where each bag corresponds to one relation in
the query and the ligament edges, i.e., the inequality joins, are cov-
ered by neighboring bags.

C.1 Core XPath Queries

We consider the problem of evaluating Core XPath queries over
XML documents. An XML document is represented as a rooted
tree whose nodes follow the document order. Core XPath queries
define traversals of such trees using two constructs: (1) a context

node that is the starting point of the traversal; and (2) a tree of loca-
tion steps with one distinguished branch that selects nodes and all

other branches conditioning this selection. Given a context node
v , a location step selects a set of the nodes in the tree that are ac-
cessible from v via the step’s axis. This set of nodes provides the
context nodes for the next step, which is evaluated for each such
node in turn. The result of the location step is the set of nodes ac-
cessible from any of its input context nodes, sorted in document
order.

The preorder rankpre(v) of a nodev is the index ofv in the list of
all nodes in the tree that are visited in the (depth-first, left-to-right)
preorder traversal of the tree; this order is the document order. Sim-
ilarly, the postorder rank post(v) of v is its index in the list of all
nodes in the tree that are visited in the (depth-first, left-to-right)
postorder tree traversal. We can use the pre/post-order ranks of
nodes to define the main axes descendant, ancestor, following,
and preceding [16]. Given two nodesv andv ′ in the tree, the four
axes are defined using the pre/post two-dimensional plane:

• v ′ is a descendant ofv or equivalentlyv is an ancestor ofv ′

iff pre(v) < pre(v ′) ∧ post(v ′) < post(v)

• v ′ follows v or equivalently v precedes v ′

iff pre(v) < pre(v ′) ∧ post(v) < post(v ′)

The remaining axes parent, child, following-sibling, and
preceding-sibling are restrictions of the four main axes, where
we also use the parent information par for each node:

• v ′ is a child of v or equivalently v is a parent of v ′

iff v = par (v ′)

• v ′ is a following sibling ofv or equivalentlyv is a preceding
sibling of v ′

iff pre(v) < pre(v ′) ∧ post(v) < post(v ′) ∧ par (v) = par (v ′)

We follow the standard approach to reformulate XPath evalua-
tion in the relational domain [16]. We represent the document by a
factorG in the Boolean semiring with schema (pre ,post ,par , taд).
For each node in the tree there is one tuple inG with pre and post
ranks, label taд, and preorder rank par of the parent node. A query
with n location steps is mapped to an FAQ-AI expression Q that is
a join of n+1 copies ofG where the join conditions are the inequal-
ities encoding the axes of the n steps. The first copy G0 is for the
initial context node(s). The axis of the i-th step is translated into
the conjunction of inequalities between pre/post rank variables of
the copies Gi−1 and Gi . The query Q has one free variable: This
is the preorder rank variable from the copy ofG corresponding to
the location step that selects the result nodes.

Example C.1. The Core XPath query

v/descendant :: a[descendant :: c]/following :: b

selects all b-labeled nodes following a-labeled nodes that are de-
scendants of the given context node v and that have at least one
c-labeled descendant node. The steps in the above textual repre-
sentation of the query are separated by /. The brackets [ ] delimit
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a condition on the selection of the a-labeled nodes. We can refor-
mulate this query in FAQ-AI over the Boolean semiring as follows:

Q(preb ) ←Gv (prev ,postv ,pv , taдv ) ∧Ga (prea ,posta ,pa , ’a’)∧
Gc (prec ,postc ,pc , ’c’) ∧Gb (preb ,postb ,pb , ’b’)∧
prev < prea ∧ posta < postv ∧ // a is descendant of v

prea < prec ∧ postc < posta ∧ // c is descendant of a

prea < preb ∧ posta < postb // b is following a �

The hypergraph of a relational encoding of a Core XPath query
has one skeleton hyperedge for each copy of the document fac-
tor and one ligament edge for each pair of inequalities over two
of these copies. Any two skeleton hyperedges may only have one
node, i.e., query variable, in common to express the parent/child or
sibling relationship between their corresponding steps. This hyper-
graph admits a trivial relaxed tree decomposition, which mirrors
the tree structure of the query. In particular, there is one bag of the
decomposition consisting of the variables of each copy of the doc-
ument factor. Each ligament edge represents a pair of inequalities
over variables of two neighboring bags. The running intersection
property holds since the equalities are by construction only over
variables from neighboring bags.

It is known that the time complexity of answering a Core XPath
query Q with n location steps over an XML document G is O(n ·
|G |) (Theorem 8.5 [14]; it assumes the document factor sorted). We
can show a linearithmic time complexity result using our FAQ-AI
reformulation of Core XPath queries and the trivial relaxed tree
decomposition.

Proposition C.2. For any Core XPath query Q with n location

steps and XML document G, the query answer can be computed in

time O(n · |G | · log |G |).

Proof. Let φ be the FAQ-AI reformulation ofQ and F the factor
representing the XML document G. There is a one-to-one corre-
spondence between the trivial relaxed tree decomposition and the
XPath query, with one bag per location step. Let n be the num-
ber of location steps in Q , or equivalently the number of bags in
the tree decomposition. We consider this trivial tree decomposi-
tion and choose its root as the bag corresponding to the location
step that selects the answer node set. Our evaluation algorithm
proceeds in a bottom-up left-to-right traversal of the tree decom-
position and eliminates one bag at a time. This bag elimination is
a variant

We index the bags and their corresponding factors in this traver-
sal order. The first factor to eliminate is then denoted by F1 while
the last factor, which corresponds to the location step selecting the
answer node set, is denoted by Fn .

We initially create factors Sj that are copies of factors Fj cor-
responding to leaf bags in the tree. Consider now two factors Sj
and Fi corresponding to a leaf bag and respectively to its parent
bag. Let ϕi ,j be the conjunction of inequalities defining the axis re-
lationship between the location steps corresponding to these bags.
We then compute a new factor Si that consists of those tuples in Fi
that join with some tuples in Sj . This is expressed in FAQ-AI over

the Boolean semiring:

Si (prei ,posti ,pi , ti ) ←Fi (prei ,posti ,pi , ti ) ∧ Sj (prej ,postj ,pj , tj )
∧ ϕi ,j

The conjunction ϕi ,j only has two inequalities on variables be-
tween the two bags. Computing Si takes timeO(|F | log |F |) follow-
ing the algorithm from the proof of Theorem 3.5. We can sort both
Fi and Sj in ascending order on the preorder column and in de-
scending order on the postorder column. For each tuple t in Fi , the
tuples in Sj that join with t form a contiguous range in Sj . To assert
whether t is in Si , it suffices to check that this range is not empty.
There are n such steps and |F | = |Fi | = |G |, with an overall time
complexity of O(n · |G | log |G |). �

C.2 Probabilistic Queries with Inequalities

The problem of query evaluation in probabilistic databases is #P-
hard for general queries and probabilistic database formalisms [34].
Extensive prior work focused on charting the tractability frontier
of this problem, with positive results for several classes of queries
on so-called tuple-independent probabilistic databases. We discuss
here one such class of queries with inequality joins called IQ [30].

A tuple-independent probabilistic database is a database where
each tuple t is associated with a Boolean random variablev(t) that
is independent of the other tuples in the database. This is the data-
base formalism of choice for studies on query tractability since in-
ference is hard already for trivial queries on more expressive prob-
abilistic database formalisms [34].

FAQ factors naturally capture tuple-independent probabilistic
databases: A tuple-independent probabilistic relation R is a factor
that maps each tuple t in R to the probability that the associated
random variable v(t) is true.

We next define the class IQ of inequality queries and later show
how to recover the linearithmic time complexity for their infer-
ence.

Definition C.3 (adapted from Definitions 3.1, 3.2 [30]). Let a hy-
pergraph H = (V = [n],Es ∪ Eℓ ), where Es and Eℓ are disjoint,
Es consists of pairwise disjoint sets, Eℓ consists of sets {i , j} for
which there is a vector ci ,j ∈ {[1,−1]T, [−1, 1]T}, and ∀F ∈ Es :
|(⋃I ∈Eℓ I ) ∩ F | ≤ 1. An IQ query has the form

Q() ←
∧
F ∈Es

RF (XF ) ∧
∧

{i ,j }∈Eℓ
[Xi ,X j ]T · ci ,j ≤ 0 (110)

where (RF )F ∈Es are distinct factors. �

The edges (i.e., binary hyperedges) in Eℓ correspond to inequal-
ities of the query variables. These inequalities are restricted so that
there is at most one node (query variable) from any hyperedge in
Es . Inequalities on variables of the same factor are not in Eℓ ; they
can be computed trivially in a pre-processing step.

The inequalities may only have the form Xi ≤ X j or X j ≤ Xi .
They induce an inequality graph where Xi is a parent of X j if
Xi ≤ X j . This graph can be minimized by removing edges cor-
responding to redundant inequalities implied by other inequali-
ties [19]. Each graph node thus corresponds to precisely one factor.
We categorize the IQ queries based on the structural complexity of
their inequality graphs into (forests of) paths, trees, and graphs.
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Example C.4. Consider the following IQ queries:

Q1() → R(A) ∧ S(B) ∧T (C) ∧ A ≤ B ∧ B ≤ C
Q2() → R(A) ∧ S(B) ∧T (C) ∧ A ≤ B ∧ A ≤ C

The inequalities form a path in Q1 and a tree in Q2.

The probability a query over a probabilistic database I is the
probability of its lineage [34]. The lineage is a propositional for-
mula over the random variables associated with the input tuples.
It is equivalent to the disjunction of all possible derivations of the
query answer from the input tuples.

Example C.5. Consider the factors R, S ,T , where ri , sj , tk denote
the variables associated with the tuples in these factors and for a
random variable a, pa denotes the probability that a = true:

R A

r1 1 pr1
r2 2 pr2
r3 3 pr3

S B

s1 2 ps1
s2 3 ps2
s3 4 ps3

T C

t1 3 pt1
t2 4 pt2
t3 5 pt3

The lineage ofQ1 and Q2 over these factors is:

r1[s1(t1 + t2 + t3) + s2(t2 + t3) + s3t3]+
r2[ s2(t2 + t3) + s3t3]+
r3[ s3t3]︸                                              ︷︷                                              ︸

lineage of Q1

r1(s1 + s2 + s3)(t1 + t2 + t3)+
r2( s2 + s3)(t1 + t2 + t3)+
r3( s3)( t2 + t3)︸                                ︷︷                                ︸

lineage of Q2

Prior work (Theorem 4.7 [30]) showed that the probability of
an IQ query Q with an inequality tree with k nodes over a tuple-
independent probabilistic database of size N can be computed in

time O(2k · N logN ) using a construction of the query lineage in
an Ordered Binary Decision Diagram (OBDD). We show next that
a variant of the algorithm in the proof of Lemma 3.1, adapted from
counting to weighted counting, i.e., probability computation, can
compute the probability in time O(N logN ), thus shaving off an
exponential factor in the number of inequalities.

We first explain this result using two examples, which draw on
a crucial observation made in prior work [30]: The lineage of IQ
queries has a chain structure: For each factor, there is an order
on its random variables that defines a chain of logical implications
between their cofactors in the lineage: the cofactor of the first vari-
able implies the cofactor of the second variable, which implies the
cofactor of the third variable, and so on.

Example C.6. We continue Example C.5. The lineage of Q1 and
Q2 is arranged so that the chain structure becomes apparent. This
structure allows for an equivalent rewriting of the lineage [30], as
shown next for the lineage ϕr1 of Q1 (for a random variable a, a
denotes its negation):

ϕri = riϕsi + riϕri+1 ,∀i ∈ [3]; ϕr4 = false

ϕsj = sjϕtj + sjϕsj+1 ,∀j ∈ [3]; ϕs4 = false

ϕtk = tk + tkϕtk+1 ,∀k ∈ [3]; ϕt4 = false

In disjunctive normal form, the lineage ofQ1 may have size cu-
bic in the size of the database. The factorization of the lineage in
Example C.5 lowers the size to quadratic. The above rewriting fur-
ther reduces the size to linear. The rewritten form can be read di-
rectly from the input factors following the structure of the inequal-
ity tree.

Since the above expressions are sums of two mutually exclu-
sive formulas, their probabilities are the sums of the probabilities
of their respective two formulas. Their probabilities can be com-
puted in one bottom-up right-to-left pass: First for ϕtk in decreas-
ing order of k , then for ϕsj in decreasing order of j, and finally for
ϕri in decreasing order of i . We extend the probability function p
from input random variables to formulas over these variables. The
probability of Q1’s lineage, which is also the probability of Q1, is
(∀i , j,k ∈ [3]):

p(ϕri ) = p(ri ) · p(ϕsi ) + [1 − p(ri )] · p(ϕri+1 )
p(ϕsj ) = p(sj ) · p(ϕtj ) + [1 − p(sj )] · p(ϕsj+1 )
p(ϕtk ) = p(tk ) + [1 − p(tk )] · p(ϕtk+1 )

Since there are no variables r4, s4, and t4, we use p(ϕr4 ) = p(ϕs4 ) =
p(ϕt4 ) = 0. This computation corresponds to a decomposition of
ϕr1 that can be captured by a linear-size OBDD [30].

The probability of the lineage ψr1 of Q2 is computed similarly
(∀i , j,k ∈ [3]):

p(ψri ) = p(ri ) · p(ψsi ) · p(ψti ) + [1 − p(ri )] · p(ψri+1)
p(ψsj ) = p(sj ) + [1 − p(sj )] · p(ψsj+1 )
p(ψtk ) = p(tk ) + [1 − p(tk )] · p(ψtk+1 )

This computationwould correspond to a decomposition ofψr1 that
can be captured by an OBDDwith several nodes for a random vari-
able from S and T ; in general, such an OBDD would have a size
linear in N but with an additional exponential factor in the size
of the inequality tree due to the inability to represent succinctly
the products of lineage over T and of lineage over S [30]. (OBDDs
with AND nodes can capture such products without this exponen-
tial factor, though in this paper we do not use them.) �

Proposition C.7. Given a tuple-independent probabilistic data-

base I of size N and an IQ query Q with a forest of inequality trees,

we can compute the probability of Q over I in timeO(N logN ).

Proof. We next present the inference algorithm for a given IQ
query Q with an inequality tree. It uses a minor variant of the al-
gorithm from the proof of Lemma 3.1 to compute a functional ag-
gregate query with additive inequalities over two factors.

We first reduce the input database I to a simplified database of
unary and nullary factors that is constructed by aggregating away
all query variables that do not contribute to inequalities.

Let us partition Es into the hyperedges E1 that contain query
variables involved in inequalities and all other hyperedges E2 .

We reduce each factor (RF )F ∈E1 with a query variableXi occur-
ring in inequalities to a unary factor S {i } by aggregating away all
other query variables. For an Xi -value xi , S {i }(xi ) gives the prob-
ability of the disjunction of the independent random variables as-
sociated with the tuples in RF that have the Xi -value xi :

S {i }(xi ) = 1 −
∏

x ∈Dom(XF −{i })

(
1 − RF (xF )

)

We also reduce all factors (RF )F ∈E2 with no query variable occur-
ring in inequalities to one nullary factor S∅ by aggregating away
all query variables. S∅() gives the probability of the conjunction of
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all factors without query variables in inequalities:

S∅() =
∏

F ∈E2l

[
1 −

∏
x ∈Dom(XF )

(
1 − RF (xF )

) ]
This simplification reduces the set Es of hyperedges to a new

set Eu of unary edges, one per query variable in the inequalities,
and one nullary edge: Eu = {∅} ∪

⋃
{i ,j }∈Eℓ {{i}, {j}}. The simpli-

fication does not affect the inference problem: The probability of
Q is the same as the probability of the query Q ′ over Eu ∪ Eℓ :

Q ′() ←
∧
F ∈Eu

SF (XF ) ∧
∧

{i ,j }∈Eℓ
[Xi ,X j ]T · ci ,j ≤ 0 (111)

The hypergraph ofQ ′ trivially admits the relaxed tree decomposi-
tion whose structure is that of the inequality tree ofQ ′ (and ofQ):
The skeleton edges are Eu and the ligament edges are Eℓ .

The inference algorithm traverses the inequality tree bottom-up
and eliminates one level of query variables at a time. For a variable
Xp with children Xc1 , . . . ,Xck , it computes recursively the factor

Qp (xp ) = Sp (xp ) ·
∏
i ∈[k]

Sci (lubi (xp )) + (1 − Sp (xp )) ·Qp (lsubp (xp ))

Weuse lubi (xp ) to find the value in Sci that is the least upper bound
of xp and lsubp (xp ) to find the value in Qp that is the least strict
upper bound of xp , i.e., the next value in ascending order. The def-
inition of Qp is recursive: It first computes the probability for xp
and then for its previous values. In case Xp has no children, i.e.,
k = 0 the product over Sci is one.

The probability of Q is then the product of S∅ and the probabil-
ity of the first tuple in the factor of the root variable. If Q has a
forest of inequality trees, then the subqueries for the trees would
be disconnected and thus correspond to independent random vari-
ables. The probability of Q is then the product of the probabilities
of the independent subqueries. �

The case of inequality graphs can be reduced to that of inequal-
ity trees by variable elimination. The elimination of a variable Xi
repeatedly replaces it in the query by a value from its domain. The
inequality graph of this residual query has no node forXi and none
of its edges. By removing k variables to obtain an inequality tree,
the complexity of computing the query probability increases by at
most the product of the sizes of the factors having thesek variables.
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