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RK-MEANS: FAST CLUSTERING FOR RELATIONAL DATA

RYAN CURTIN, BEN MOSELEY, HUNG Q. NGO, XUANLONG NGUYEN, DAN OLTEANU,
AND MAXIMILIAN SCHLEICH

Abstract. Conventional machine learning algorithms cannot be applied until a data matrix is available
to process. When the data matrix needs to be obtained from a relational database via a feature extraction
query, the computation cost can be prohibitive, as the data matrix may be (much) larger than the total input
relation size. This paper introduces Rk-means, or relational k-means algorithm, for clustering relational data
tuples without having to access the full data matrix. As such, we avoid having to run the expensive feature
extraction query and storing its output. Our algorithm leverages the underlying structures in relational data.
It involves construction of a small grid coreset of the data matrix for subsequent cluster construction. This
gives a constant approximation for the k-means objective, while having asymptotic runtime improvements
over standard approaches of first running the database query and then clustering. Empirical results show
orders-of-magnitude speedup, and Rk-means can run faster on the database than even just computing the
data matrix.

1. Introduction

Clustering is an ubiquitous technique for exploratory data analysis, whether applied to small samples
or industrial-scale data. In the latter setting, two steps are typically performed: (1) data preparation, or
extract-transform-load (ETL) operations, and (2) clustering the extracted data—often with a technique such
as the popular k-means algorithm [12, 44]. In this setting, data typically reside in a relational database,
requiring a feature extraction query (FEQ) to be performed, joining involved relations together to form the
data matrix: each row corresponds to a data tuple and each column a feature. Then, the data matrix is
used as input to a clustering algorithm. Such data matrices can be expensive to compute, and may take up
space asymptotically larger than the database itself, which is made of relational tables. Moreover, the join
computation time may exceed the time it takes to obtain clusters. It is not uncommon that the exploratory
trip into the dataset may be stopped right at the gate.

As an example, consider a retailer database consisting of three tables: product, which contains data
about p products, store, which contains data about s stores, and transaction, which contains the number of
transactions for each (product, store) combination on a given day. The table product contains information
about each of the p products, stores contains information about each of the s stores, and transactions

contains the (nonzero) number of transactions for each (product, store) combination on a given day. A
practitioner may want to cluster each (product, store) combination as part of an analysis to determine items
with related sales patterns across different stores for a given week. To do this, she constructs a data matrix
containing all (product, store) combinations (including those with zero sales) for a given week, and additional
attributes for each product and store. This can be achieved, for instance, by the following feature extraction
query, given in SQLite syntax:

SELECT P.id AS i, S.id AS s, P.type AS t, P.price AS p,

S.yelp_rating AS y, sum(ifnull(T.count, 0)) AS c

FROM product P, store S LEFT JOIN transactions T

ON T.product_id == P.id AND T.store_id == S.id

AND T.date BETWEEN ’2019-05-13’ AND ’2019-05-20’

GROUP BY P.id, S.id;

The result of this query is of size Θ(ps). But the transaction table can be significantly smaller than this,
since many stores may have zero sales of a particular product in a given week. Thus, the size of the data
matrix can be asymptotically greater than the total input relations’ sizes. Real-world FEQs possess a similar
explosion in both space and time complexity, only at a much larger scale, since they generally involve many
more aggregations and tables. In Section 5, we present a real dataset from a large US retailer. The database
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(a) Typical k-means data science workflow. Alternate representations can be used
for the data in step (2) for greater computational efficiency (e.g., streaming); and,
approximation strategies are known for step (3). However, the dataset often comes
from an underlying database system, and in this case the expensive FEQ join (1) is
unavoidable.
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(b) The Rk-means data science workflow. We avoid ever computing the expensive
FEQ by instead clustering each underlying relation (steps 1 and 2, Section 4); we then
use FAQs for efficient weighted k-means of the cross-product of those relations (steps
3 and 4, Section 4). This gives significant empirical and theoretical accelerations, and

bounded approximation—without ever computing the full data matrix.

Figure 1. Conventional k-means and Rk-means.

has 6 tables of total size 1.5GB. The FEQ result, however, takes up 18GB, and constructing it takes longer
than running a learning algorithm on it.

Stripping away the language of databases, a fundamental challenge is how to learn about the joint distri-
bution of a data population given only marginal samples revealed by relational tables. This is possible when
the objective function of an underlying model admits some factorization structure similar to conditional
independence in graphical models [28]. This insight was exploited recently by database theorists to devise
algorithms evaluating a generic class of relational queries called functional aggregate queries, or FAQs [4].
The ability to answer FAQs quickly is a building block for a new class of efficient algorithms for training
supervised learning models over relational data, without having to materialize (i.e. compute) the entire data
matrix [3, 2, 37].

The goal of this paper is to devise a method for fast clustering of relational data, without having to
materialize the full data matrix. The challenge of unsupervised learning tasks in general and the k-means
algorithm in particular is that the learning objective is not decomposable across marginal samples in relational
tables. To enable fast relational computation, we utilize the idea of constructing a grid coreset—a small set
of points that provide a good summarization of the original (and unmaterialized) data tuples, based on which
a provably good clustering can be obtained.

The resulting algorithm, which we call Rk-means, has several remarkable properties. First, Rk-means has
a provable constant approximation guarantee relative to the k-means objective, despite the fact that the
algorithm does not require access to the full data matrix. Our approximation analysis is established via a
connection of Rk-means to the theory of optimal transport [41]. Second, Rk-means is enhanced by leveraging
structures prevalent in relational data: categorical variables, functional dependencies, and the topology of
feature extraction queries. These structures lead to exponential reduction in coreset size without incurring
loss in the coreset’s approximation error. We show that Rk-means is provably more efficient both in time
and space complexity when comparing against the application of the vanilla k-means to the full data matrix.
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Finally, experimental results show significant speedups with little loss in the k-means objective. We observe
orders-of-magnitude improvement in the running time compared to traditional methods. Rk-means is able
to operate when other approaches would run out of memory, enabling clustering on truly massive datasets.

2. Background and related work

2.1. Background on Database Queries and FAQs. Recent advancements in the database community
have produced new classes of query plans and join algorithms [5, 4, 32, 33] for the efficient evaluation
of general database queries. These general algorithms hinge on the expression of a database query as a
functional aggregate query, or FAQ [4].

Loosely speaking, an FAQ is a collection of aggregations (be they sum, max, min, etc.) over a number
of functions known as factors1, in the same sense as that used in graphical models. In particular, if there
was only one aggregation (such as sum), then an FAQ is just a sum-product form typically used to compute
the partition function. An FAQ is more general as it can involve many marginalization operators, one for
each variable, and they can interleave in arbitrary way. Every relational database query can be expressed in
this way. Consider the example query of Section 1: for this, the task of the database query evaluator is to
compute max(transactions.count) for every tuple (i, s, t, p, y) that exists in the output. We can express this
as a function:

φ(i, s, t, p, y) = max
c

max
i

max
s
ψP (i, t, p)ψT (i, s, c)ψS(s, y).(1)

In this we have three factors ψP (·), ψT (·), and ψS(·), which correspond to the product, transactions, and
store tables, respectively. We define ψP (i, t, p) = 1 if the tuple (i, t, p) exists in the product table and 0 other-
wise; we define ψS(s, y) similarly. We define ψT (i, s, c) = c if the tuple (i, s, c) exists in the transactions table
and 0 otherwise. Thus, given any tuple (i, s, t, p, y), we can compute max(transactions.count)= φ(i, s, t, p, y).

In order to efficiently solve an FAQ (of which Equation (1) is but one example), the InsideOut algorithm of [4]
may be used; InsideOut is a variable elimination algorithm, inspired from variable elimination in graphical
model, with several new twists. One twist is to adapt worst-case optimal join algorithms [] to speed up
computations by exploiting sparsity in the data. Another twist is that the algorithm has to carefully pick a
variable order to minimize the runtime, while at the same time respect the correctness and semantic of the
query. Unlike in the case of computing a sum-product where the summation opeartors are commutative, in
a FAQ the operators may not be commutative.

To characterize the runtime of this algorithm, we must first observe that each database query and thus
FAQ corresponds to a hypergraph H = {V , E}. The vertices V of this hypergraph correspond to the variables
of the FAQ expression; in our example, we have V = {i, s, t, p, y, c}. The hyperedges E , then, correspond to
each factor ψP (·), ψT (·), and ψS(·)—which in turn correspond to the tables in the database. This hypergraph
H is shown in Figure 2.1.

ψP

ψT

ψS

t p

i
c

s

y

Figure 2. Example hypergraph H for the example query and FAQ in Equation 1.

Roughly, InsideOut proceeds by first selecting a variable ordering σ, reordering the FAQ accordingly, and
then solving the inner subproblems repeatedly, in much the same way variable elimination works for inference
in graphcal models [28]. The runtime of InsideOut is dependent on a notion of width of H called FAQ-width,
or faqw(·). Fully describing this width is beyond the scope of this paper and we encourage readers to refer
to [4] for full details. The FAQ-width is a generalized version of fractional hypertree width of [19] (denoted by
fhtw). When the FAQ query does not have free variables, faqw = fhtw. Given some FAQ with hypergraph H,

via Section 4.3.4 of [5], InsideOut runs in time Õ(N faqwH(σ) + Z), where we assume that the support of each

1A full formal definition of FAQs can be found in [4], but is not required for our work here so we omit it.
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factor2 is no more than O(N), and Z is the number of tuples in the output. As an example, the hypergraph
of Figure 2.1 has faqwH(σ) = 1. Overall, InsideOut gives us the most efficient known way to evaluate problems
that can be formulated as FAQs.

2.2. Coresets for clustering. From early work on k-means algorithm [29], ideas emerged for acceleration
via coresets [21, 8]. Coresets have become the cornerstone of modern streaming algorithms [20, 11], massively
parallel (MPC) algorithms [15, 9], and are used to speed up sequential methods [31, 38].

Unfortunately, existing algorithms for coreset construction do not readily lend themselves to the relational
setting; there are several hurdles. First of all, coresets are formed by constructing a set S of data points
(tuples) that represent the entire data set X well. Typically, S is a weighted representation of the data,
where each point in the universe contributes one unit of weight to its closest point in X [22, 15, 10]. In our
relational setting, X can only be formed by computing the FEQ, but our goal is to avoid materializing X .

A common challenge for adapting existing coreset constructions given our goal is that most methods
construct S in phases by determining the farthest points from S [40, 7, 22]. This is difficult without X fully
materialized. Another difficulty is that, even if the points in S are given, weighting the points in S is an open
problem for relational algorithms [27]. Without X materialized, again, the points and their attributes are
stored across several tables. Fixing a point x ∈ S and finding the number of closest points in (unmaterialized)
X is non-trivial. No method, either deterministic or stochastic (e.g., sampling), is known that runs in time
asymptotically faster than computing/materializing X . Our method avoids this by constructing a grid
coreset S which can be decomposed over the tables in such a way that computing the weights of the points
is a straightforward task.

2.3. Other Related Work. Our work draws inspiration from three lines existing work and ideas: coresets
for clustering (discussed above), relational algorithms, and optimal transport. Some previous work has
focused on the connection to databases; database and disk hardware optimizations have been considered to
improve clustering relational data [34, 35]. Recent advances include the work of [3, 37]. k-means has also
been connected to optimal transport, which goes back to at least [36] (see also [18]). Recently this connection
has received increased interest in the statistics and machine learning communities, resulting in fresh new
clustering techniques [14, 24, 45]. To our knowledge, these related lines of work have not been explored
together. Motivated by clustering relational data, our attempt at solving a clustering problem formulated
as optimal transport in the marginal (projected) spaces to scalably perform k-means clustering appears to
be the first in the literature.

Finally, it is worth noting that despite its popularity, the basic k-means technique is not always a pre-
ferred choice in clustering categorical or high-dimensional data. One may either adopt other clustering
techniques [23, 26, 16], or modify the basic k-means method, e.g., by suitably placing weights on different
features of mixed data types and replacing metric ℓ2 by ℓp [25], or incorporating a regularizer to combat high
dimensionality [43, 39]. As we shall see, the relational techniques and associated theory that we introduce
for the basic k-means extend easily to such improvements.

3. Rk-means, coresets and optimal transport

Although the Rk-means algorithm is motivated by application to relational databases, its basic idea is
also of independent interest and can be easily described without the database language.

First we define the weighted k-means problem, which Rk-means solves (weights are also handy in combining
mixed data types [25]). Let X be a set of points in R

d, and Y be a non-empty set of points in the same
space. Let d(x,Y ) := miny∈Y ‖x− y‖ denote the minimum distance from x to an element in Y . In some
cases, the ℓ2 norm ‖ · ‖ may be replaced by the ℓp norm ‖ · ‖p for some p ≥ 1. A weighted k-means instance
is a pair (X,w), where X is a set of points in R

d and w : X → R
+ is a weight function. Without loss of

generality, assume
∑

x∈X w(x) = 1. The task is to find a set C = {µ1, · · · ,µk} of k centroids to minimize

the objective L(X,C,w) =
∑

x∈X w(x)d(x,C)2.
That is, we want to solve the problem OPT(X,w) := minC L(X,C,w). With Rk-means, we will do this

by projecting X onto different sets of coordinates, and clustering each projection individually. To this end,
let [d] = S1 ∪ · · · ∪ Sm denote an arbitrary partition of the dimensions [d] into non-empty subsets. For every

2Or in our case, the number of tuples in the table corresponding to that factor.
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Algorithm 1 Rk-means: k-means via grid-coreset

1: Input: query Q, number of clusters k
2: Input: [d] = S1 ∪ · · · ∪ Sm, κ ≥ 2
3: Output: centroids C ∈ Rk×d

4: for j = 1 to m do

5: Xj ← {xSj | x ∈ X}
6: wj ← weight function defined in (3)
7: Cj ← wkmeans1(Xj ,wj ,κ) {approx. ratio α}
8: end for

9: G← C1 × . . .×Cm {the grid coreset}
10: wgrid ← weight function defined in (4)
11: C ← wkmeans2(G,wgrid, k) {approx. ratio γ}

x ∈ R
d, and j ∈ [m], let xSj denote the projection of x onto the coordinates in Sj. Define the projection

set Xj and corresponding weight function wj : R
Sj → R by

Xj :=
{

xSj | x ∈ X
}

,(2)

wj(z) :=
∑

x∈X : xSj
=z

w(x).(3)

In words, the wj are the marginal measures of w on the subspace of coordinates Sj . With these notations
established, Algorithm 1 presents the high-level description of our algorithm, Rk-means.

For each j ∈ [m], in line 7 we perform k-means to obtain κ individual clusters on each subspace Sj for some
κ ≥ 2. These are solved using some weighted k-means algorithm denoted by wkmeans1 with approximation
ratio α. Then, using the results of these clusterings, we assemble a cross-product weighted grid G of centroids,
and then perform k-means clustering on these using the algorithm denoted wkmeans2 to reduce down to the
desired result of k centroids. Typically, take κ = O(k).

Let X :=
⊎

g∈GXg denote a partition of X into |G| parts, where Xg denote the set of points in X

closer to g than other grid points in G (breaking ties arbitrarily). Then, the weight function for line 11 is
wgrid : G→ R

+ is defined as

wgrid(g) :=
∑

x∈Xg

w(x).(4)

Weighted k-means and optimal transport. We will analyze the Rk-means algorithm in the language of optimal
transport. The connection of k-means in general, and of our algorithm to optimal transport in particular,
provides another interesting insight into our algorithm.

The optimal transport distance characterizes the distance between two probability measures, by measuring
the optimal cost of transporting mass from one to another [41]. Although this is defined more generally for
any two probability measures in abstract spaces, for our purpose it is convenient to consider two discrete
probability measures P and P ′ on R

d.
Let Z and Z ′ be two finite point sets in R

d. Let δ denote the Dirac measure. Let P :=
∑

z∈Z p(z)δz
and P ′ :=

∑

z′∈Z′ p′(z′)δz′ be two measures with supports Z and Z ′, respectively. The mass transportation
plan can be formalized by a coupling: a joint distribution Q = (q(z, z′))(z,z′)∈Z×Z , where the marginal
constraints

∑

z∈Z qz,z′ = p′(z′) and
∑

z′∈Z′ qz,z′ = p(z) hold.

Definition 3.1. For any p ≥ 1, the Wasserstein distance of order p is defined by the minimization of Q over
all possible couplings: Wp(P ,P

′) = minQ({∑z,z′ q(z, z′) ‖z − z′‖pp)}1/p.

Let P in =
∑

x∈Xw(x)δx be the discrete measure associated with the input instance of our weighted k-

means problem; then, this can be expressed precisely as an optimal transport problem: M∗ = argmin W2
2(M ,P in),
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where the optimization is over the space of discrete measures M that have k support points (the set C of k
centroids). Note that OPT(X,w) = W2

2(M
∗,P in). Replacing ℓ2 by say ℓ1, we obtain the k-median problem,

for which the objective becomes W1(M
∗,P in).

Approximation Analysis. We next analyze the approximation ratio of our Rk-means algorithm working with
the W2

2 objective, provided that wkmeans1 has approximation ratio α and wkmeans2 has approximation ratio
γ.3 The reason we might want to invoke different algorithms to solve these sub-problems is because, as we
shall show in the next section, we may want to exploit the (relational) structures of the FEQ to construct
a “nice” partition S1 ∪ · · · ∪ Sm. We show that the overall approximation ratio of Rk-means is (

√
α+
√
γ +√

αγ)2. In many common cases, the relational database has structure that allows α = 1, yielding an overall

approximation ratio of (1 + 2
√
γ)2.

For our analysis it is useful to understand Algorithm 1 in the language of optimal transport. For any
finite point set Y ⊂ R

d and a measure M =
∑

y∈Y p(y)δy with support Y , define the marginal measures

Mj on coordinates Sj induced by M in the natural way, i.e. Mj :=
∑

z∈Z pj(z)δz where pj is defined

analogous to wj in (3). Under this notation, P in induces the marginal measures P in
j :=

∑

z∈Xj
wj(z)δz .

Then, Algorithm 1 can be described by the following steps:

(1) For each j ∈ [m], pick Mj to be the (α-approximate) minimizer of W2
2(Mj ,P

in
j ), where Cj =

supp(Mj) is the support of Mj and |Cj | = κ (line 7).
(2) Collect the κd grid points G and let probability measure Q be the one with support in G such that

Q minimizes W2
2(Q,P in). (We solve this problem exactly!)

(3) Finally, return P which is the measure with exactly k support points in R
d that (γ-approximately)

minimizes W2
2(P ,Q) (line 11).

This is precisely the solution obtained by Algorithm 1. We present next some useful facts.

Lemma 3.2. For any discrete measure M on R
d, W2

2(M ,P in) ≥
∑m

j=1 W
2
2(Mj ,P

in
j ).

Proof. A valid coupling of two measures induces valid marginal couplings of marginal measures. �

Proposition 3.3. The following hold:

(a) If κ ≥ |supp(M∗
j )| ∀ j ∈ [m], then W2(P

in,P ) ≤ (
√
γ +
√
α+
√
γα)W2(P

in,M∗).

(b) For any κ ≥ 1, there exists a distribution P in such that

W2(P
in,P )

W2(P in,M∗)
≥

√

1− e−m/(2κ)

√
3k3/(2m)

2κm1/2
.(5)

Proof. (a) By the definition of Q, the optimal transport plan from P in to Q is such that each support point
s ∈ S is received by all x ∈X nearest to s compared to other points in S. So,

W2
2(P

in,Q) =
∑

x∈X

w(x)d(x,G)2(6)

=
∑

x∈X

w(x)

m
∑

j=1

d(πSjx,Cj)
2(7)

=

m
∑

j=1

∑

z∈Xj

wj(z)d(z,Cj)
2(8)

=

m
∑

j=1

W2
2(Mj ,P

in
j )(9)

≤ α
m
∑

j=1

W2
2(M

∗
j ,P

in
j )(10)

≤ α ·W2
2(M

∗,P in).(11)

3The best known approximation ratio is 6.357 for data in Euclidean space [6].
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The second to last inequality is due to the α-approximation of wkmeans1, and condition that |supp(Mj)| ≥
|supp(M∗

j )|. The last inequality follows from Proposition 3.2. By the triangle inequality of W2,

W2(P
in,P ) ≤W2(P

in,Q) +W2(Q,P )(12)

≤W2(P
in,Q) +

√
γ ·W2(Q,M∗)(13)

≤W2(P
in,Q) +

√
γ(W2(Q,P in) +W2(P

in,M∗))(14)

= (1 +
√
γ)W2(P

in,Q) +
√
γ ·W2(P

in,M∗)(15)

≤ (1 +
√
γ)
√
αW2(P

in,M∗) +
√
γ ·W2(P

in,M∗)(16)

=
(√
α+
√
γ +
√
αγ

)

·W2(M
∗,P in).(17)

The second inequality is due to the fact that wkmeans2 has approximation ratio γ; the first and third are
the triangle inequality. We conclude the proof.

(b) We only need to construct an example of P in for the case d = m. Although P in as an input to
the algorithm is a discrete measure, for the purpose of this proof it suffices to take P in to be the uniform
distribution on [0, 1]m (which can be approximated arbitrarily well by a discrete measure). It is simple
to verify that if k0 = k1/m is a natural number, then M∗ is a uniform distribution on the regular grid
of size k0 in each dimension. It follows that W2

2(P
in,M∗) ≤ m

12k3
0

= m
12k3/m . The grid points G range

over the set S := [1/(2κ), 1 − 1/(2κ)]m. Moreover, Q is a uniform distribution on G. Now P is the
outcome of line (11) so the support of P must lie in the convex hull S of G. The cost of each unit mass
transfer from an atom in the complement of set [1/(4κ), 1 − 1/(4κ)]m to one in S is at least (1/4κ)2, so
W2

2(P
in,P ) ≥ (1/4κ)2 · [1 − (1− 1/(2κ))m]. We note (1 − 1/(2κ))m < e−m/2κ to conclude the proof. �

The condition of part (a) is satisfied, for instance, by setting κ = k. In practice, κ < k may suffice. More-
over, part (b) dictates that κmust grow with k appropriately for our algorithm to maintain a constant approx-
imation guarantee. Since solution C has cost L(X,C,w) = W2

2(P ,P
in), and OPT(X,w) = W2

2(M
∗,P in),

the following theorem is immediate from Prop. 3.3(a).

Theorem 3.4. Suppose wkmeans1 and wkmeans2 have approximation ratios α and γ. Then by choosing κ = k,
the solution C given by Rk-means has the following guarantee: L(X,C,w) ≤ (

√
γ+
√
α+
√
γα)2OPT(X,w).

Specifically, if both sub-problems are solved optimally (α = γ = 1), Rk-means is a 9-approximation.

Regularized Rk-means. It is possible to extend our approach to accommodate regularization techniques.
This can be useful when the data are very high dimensional [39, 43]. Thus, the clustering formulation can
be expressed as a regularized optimal transport problem: M∗ = argmin W2

2(M ,P in) + Ω(M) where the
optimization is over the space of discrete measures M that have k support points (the set C of k centroids),
and the regularizer Ω(M) ≥ 0 typically decomposes over the m-partition of variables: Ω(M) =

∑m
j=1 Ωj(Mj).

For instance, Ωj(Mj) may be taken to be a multiple of the ℓ1 norm of Mj ’s supporting atoms (e.g., group
lasso penalty). The algorithm has the same three steps as before, with some modification in (1’) and (3’):

(1’) For each j ∈ [m], pick Mj to be the (α-approximate) minimizer of W2
2(Mj ,P

in
j ) + Ωj(Mj), where

Cj = supp(Mj) is the support of Mj and |Cj | = κ (line 7).
(3’) Finally, return P which is the measure with exactly k support points in R

d that (γ-approximately)
minimizes W2

2(P ,Q) + Ω(P ) (line 11).

Proposition 3.5. If κ ≥ |supp(M∗
j )| for all j ∈ [m], then

W2
2(P

in,P ) + Ω(P )

W2
2(P

in,M∗) + Ω(M∗)
≤ 2α+ 4γ + 4αγ.(18)

Proof. As before the optimal transport plan from P in to Q is such that each support point s ∈ S is received
by all x ∈X nearest to s compared to other points in S. So,

W2
2(P

in,Q) + Ω(M) =

m
∑

j=1

W2
2(Mj ,P

in
j ) + Ω(M)(19)
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≤ α
m
∑

j=1

(W2
2(M

∗
j ,P

in
j ) + Ωj(M

∗
j ))(20)

≤ α(W2
2(M

∗,P in) + Ω(M∗)).(21)

The second to last inequality is due to the α-approximation of (regularized) wkmeans1, and condition that
|supp(Mj)| ≥ |supp(M∗

j )|. The last inequality follows from Proposition 3.2 and the definition of Ω. By the
triangle inequality of W2, as before

W2(P
in,P ) ≤W2(P

in,Q) +W2(Q,P )(22)

≤W2(P
in,Q) +

√

γW2
2(Q,M∗) + γΩ(M∗)− Ω(P )(23)

≤W2(P
in,Q)(24)

+
√

2γW2
2(P

in,Q) + 2γW2
2(P

in,M∗) + γΩ(M∗)− Ω(P ).(25)

Hence, by Cauchy-Schwarz and combining with (21) we obtain

W2
2(P

in,P ) ≤ 2

{

(1 + 2γ)W2
2(P

in,Q) + 2γW2
2(P

in,M∗) + γΩ(M∗)− Ω(P )

}

(26)

≤ (2α+ 4γ + 4αγ)W2
2(P

in,M∗) + (2α+ 2γ + 4αγ)Ω(M∗)− (2 + 4γ)Ω(M)− 2Ω(P ).(27)

The conclusion is immediate by noting that Ω is a non-negative function. �

If both subproblems for regularized k-means can be solved optimally, our method yields a 10-approximation
on the penalized W2

2 objective. We conclude by noting that our technique extends easily to the Wp
p objective

for any p ≥ 1, but the approximation ratio will be changed according to p.

4. Leveraging structures in relational data

We now explain the “relational” part of the Rk-means algorithm, where we exploit relational structures
in the data and the FEQ to achieve significant computational savings. Three classes of relational structures
prevalent in RDBMSs are (a) categorical variables, (b) functional dependencies (FDs), and (c) the topology
of the FEQ. We exploit these structures to carefully select the partition S1 ∪ · · · ∪ Sm to use for Rk-means,
to compute the marginal sub-problems (Xj,wj), the components Cj of the coreset G, and the grid weight
wgrid without materializing the entire coreset G. When selecting partitions, there are two competing criteria:
first, we need a partition so that the approximation ratio α for wkmeans1 is as small as possible. For example,
if |Sj | = 1 for all j, so m = d, then we can apply the well-known optimal solution for k-means in 1 dimension
using dynamic programming in O(n2k) time [42]; this then provides α = 1. On the other hand, we want the
remainder of algorithm to be fast by keeping the size of the grid G, namely |G| ≤ κm, small.

4.1. Categorical variables. Real-world relational database queries typically involve many categorical vari-
ables (e.g., color, month, or city). In practice, practitioners may endow non-uniform weights for different
categorical variables, or categories [25]. In terms of representation, the most common way to deal with
categorical variables is to one-hot encode them, whereby a categorical feature such as city is represented by
an indicator vector

xcity =
[

1city=c1 1city=c2 · · ·1city=cL

]

(28)

where {c1, . . . , cL} is the set of cities occuring in the data. The subspace associated with these indicator
vectors is known as the categorical subspace of a categorical variable. This one-hot representation substantially
increases the data matrix size via an increase in the dimensionality of the data. For example, a dataset of
about 30 mostly categorical features with hundreds or thousands of categories for each feature will have its
dimensionality exploded to the order of thousands with one-hot encoding. Fortunately, this is not a problem
— by treating each categorical variable as a subset of the partition, the weighted k-means subproblem within
a categorical subspace is solvable efficiently and optimally.

8



This optimal solution can be computed in the same time it takes to find the number of points in each cate-
gory, which is a vast improvement on either an optimal dynamic program or Lloyd’s algorithm. Furthermore,
it helps keep m as low as the number of database attributes in the query.

Consider a weighted k-means subproblem solved by wkmeans1 defined on a categorical subspace induced
by a categorical feature K that has L categories. Then, the instance is of the form (I, v), where I is the
collection of L indicator vectors 1e, one for each element e ∈ Dom(K). (One can think of I as the identity
matrix of order L.) Define the weight function v as

v(1e) =
∑

x∈X,xK=e

w(x).(29)

For any set F ⊆ Dom(K), let vF denote the vector (v(1e))e∈F . Also, ‖vF‖1 and ‖vF‖2 denote the ℓ1 and
ℓ2 norm, respectively. It is useful to rewrite the categorical weighted k-means problem:

Proposition 4.1. The categorical weighted k-means instance (I, v) admits the following optimization objec-
tive:

OPT(I, v) = ‖v‖1 −max
F

∑

F∈F

‖vF ‖22
‖vF ‖1

,(30)

where F ranges over all partitions of Dom(K) into k parts.

Proof. First, consider a subset F ⊆ Dom(K) of the categories; the centroid µ of (weighted) indicator vectors
1e, e ∈ F , can be written down explicitly:

µe =

{

0 e /∈ F
ve

‖vF ‖1
v ∈ F ,(31)

The weighted sum of squared distances between 1e for all e ∈ F to µ is

∑

e∈F

(‖µ‖22 − µ2
e + (µe − 1)2)ve =

‖vF ‖22
‖vF ‖1

+
∑

e∈F

((µe − 1)2 − µ2
e)ve

=
‖vF ‖22
‖vF ‖1

+
∑

e∈F

(−2µe + 1)ve

= ‖vF ‖1 − ‖vF ‖22 / ‖vF ‖1 .
Thus, the weighted k-means objective takes the form

min
F

∑

F∈F

(

‖vF ‖1 − ‖vF ‖22 / ‖vF ‖1
)

= ‖v‖1 −max
F

∑

F∈F

‖vF ‖22 / ‖vF ‖1 ,(32)

which concludes the proof. �

In (30), note that ‖v‖1 is the total weight of input points; hence, we can equivalently solve the inner
maximization problem. With the categorical weighted k-means objective in place, we can derive the optimal
clustering. To do so, We next need the following elementary lemma.

Lemma 4.2. Suppose that x, a1, a2, b1, b2 > 0, b21 ≥ a1, b
2
2 ≥ a2 and x ≥ max{a1/b1, a2/b2}. Then

x+ a1+a2

b1+b2
≥ max

{

x2+a1

x+b1
+ a2

b2
, x2+a2

x+b2
+ a1

b1

}

.

Proof. It suffices to establish x+ a1+a2

b1+b2
≥ x2+a1

x+b1
+ a2

b2
, or equivalently

x− x2 + a1
x+ b1

≥ a2
b2
− a1 + a2
b1 + b2

,

which can be simplified as

(33) x(b1 + b2 + a1/b1 − a2/b2) ≥ a1b2/b1 + a2b1/b2.
9



To verify this inequality, consider two cases. If a1/b1 ≥ a2/b2, then LHS ≥ x(b1+b2) ≥ (a2/b2)b1+(a1/b1)b2.
On the other hand, if a2/b2 > a1/b1. Since b2 − a2/b2 ≥ 0,

LHS ≥ (a2/b2)(b1 + b2 + a1/b1 − a2/b2)
= a2b1/b2 + a2 + a1a2/(b1b2)− a22/b22
= a2b1/b2 + a1b2/b1 + (b2 − a2/b2)(a2/b2 − a1/b1)
≥ a2b1/b2 + a1b2/b1.

Thus the proof is complete. �

Then, the optimal solution to the categorical k-means instance is an immediate consequence:

Corollary 4.3. Let (e1, . . . , eL) be a permutation of Dom(K) such that ve1 ≥ ve2 ≥ . . . ≥ veL . Then for any
k ≥ 2 and any k-partition F of Dom(K), there holds

ve1 + . . .+ vek−1
+

∑L
i=k v

2
i

∑L
i=k vi

≥
∑

F∈F

‖vF ‖22
‖vF ‖1

.

Proof. We prove the claim by induction on k. Let F ∈ F be the set containing the element {e1}. If there
is only one element in F then we apply the induction hypothesis on the remaining terms. Otherwise, F
contains at least two elements. Let G ∈ F be an arbitrary element of F where G 6= F . Define F ′ to be the
partition obtained from F by replacing (F ,G) with ({e1},F ∪G− {e1}). Then, Lemma 4.2 can be applied
to get

∑

F∈F

‖vF ‖22
‖vF ‖1

≤
∑

F∈F ′

‖vF ‖22
‖vF ‖1

.

Induction on the tail k − 1 terms completes the proof. �

Theorem 4.4 below follows trivially from the above corollary. Corollary 4.3 and the objective for k-means
on a single attribute in the equation of Proposition 4.1 establishes precisely the structure of the optimal
solution for data consisting of a single categorical variable.

Theorem 4.4. Given a categorical weighted k-means instance, an optimal solution can be obtained by putting
each of the first k − 1 highest weight indicator vectors in its own cluster, and the remaining vectors in the
same cluster.

This means that for a categorical variable with L categories, we can compute the optimal clustering for
the sub-problem in only O(nL logL) time. The variable gives rise to a categorical subspace of size |Sj | = L.

4.2. Functional dependencies. Next, we address the second call to wkmeans2: its runtime is dependent
on the size of the grid G, which can be up to O(km), where m is the number of features from the input.
Databases often contain functional dependencies (FDs), which we can exploit to reduce the size of G. An FD
is a dimension whose value depends entirely on the value of another dimension. For example, for a retailer
dataset that includes geographic information, one might encounter features such as storeID, zip, city, state,
and country. Here, storeID functionally determines zip, which determines city, which in turns determines state,
leading to country. This common structure is known as an FD-chain, and appears often in real-world FEQs.

If we were to apply Rk-means without exploiting the FDs, the features storeID, zip, city, state, and country

would contribute a factor of k5 to the grid size. However, by using the FD structure of the database, we
show that only a factor of 5k is contributed to the grid size, because most of the k5 grid points g have
wgrid(g) = 0 (see (4)). More generally, whenever there is an FD chain including p features, their overall
contribution to the grid size is a factor of O(kp) instead of O(kp), and the grid points with non-zero weights
can be computed efficiently in time O(kp).

Lemma 4.5. Suppose all d input features are categorical and form an FD-chain. Then, the total number of
grid points g ∈ G with non-zero wgrid weight is at most d(k − 1) + 1.
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Proof. Suppose the features areK1, . . . ,Kd, whereKi functionally determineKi+1, and Dom(Ki) = {ei1, ei2, · · · , eini
}.

Without loss of generality, we also assume that the elements in Dom(Ki) are sorted in descending order of
weights:

w(1ei1
) ≥ w(1ei2

) ≥ · · · ≥ w(1eini
).(34)

From Corollary 4.3, we know the set Ci of k centroids of each of the categorical subspace for Ki: there is
a centroid µi

j = 1eij
for each j ∈ [k − 1], and then a centroid µi

k of the rest of the indicator vectors. The

elements eij for j ∈ [k − 1] shall be called “heavy” elements, and the rest are “light” elements.
Now, consider an input vector x = (x1, . . . ,xd) where xi ∈ Dom(Ki). Under one-hot encoding, this vector

is mapped to a vector of indicator vectors 1x := (1x1 , · · · ,1xd
). We need to answer the question: which grid

point in G = C1× · · · ×Cd is 1x closest to? Since the ℓ22-distance is decomposable into component sum, we
can determine the closest grid point by looking at the closest centroid in Ci for 1xi , for each i ∈ [d].

If xi ∈ {ei1, . . . , eik−1}, then the corresponding one-hot-encoded version 1xi is itself one of the centroids in

Ci, and thus it is its own closest centroid. Otherwise, the closest centroid to 1xi is µi
k, because

∥

∥1xi − µi
k

∥

∥

2
<

2, and
∥

∥1xi − µi
j

∥

∥

2
= 2 for every j ∈ [k − 1].

Let µi(xi) ∈ Ci denote the closest centroid in Ci to 1xi . The closest grid point to 1x is completely
determined: g = (µ1(x1), · · · ,µd(xd)). Furthermore, let i ∈ [d] denote the smallest index such that xi is
heavy. Then, we can write g as

g = (µ1
k, · · · ,µi−1

k ,1xi ,µ
i+1(xi+1), · · · ,µd(xd))(35)

Note that once xi is fixed, due to the FD-chain the entire suffix (1xi ,µ
i+1(xi+1), · · · ,µd(xd) of g is deter-

mined. Hence, the number of different gs can only be at most d(k − 1) + 1: there are d + 1 choices for i
(from 0 to d), and k − 1 choices for xi if i > 0. �

Theorem 4.6 below follows trivially from the above lemma, because the ℓ22-distance is the sum over the
ℓ22-distances of the subspaces.

Theorem 4.6. Suppose all d input features can be partitioned into m FD-chains of size d1, · · · , dm, respec-
tively. Then, the number of grid points g ∈ G with non-zero wgrid weight is bounded by

∏m
i=1(1 + di(k − 1)).

Furthermore, the set of non-zero weight grid points can be computed in time Õ(
∏m

i=1(1 + di(k − 1))).

Note that in the above theorem, if there was no FD, then d features each form their own chain of size 1,
in which case

∏m
i=1(1 + di(k − 1)) = km; thus, the theorem strictly generalizes the no-FD case.

4.3. Query structure. Finally, we explain how the FEQ’s structure can be exploited to speed up the
computation of subproblems, the grid, and grid weights. In particular, we make use of recent advances in
relational query evaluation algorithms [5, 4, 32, 33]. The InsideOut algorithm from the FAQs framework in
particular [5] allows us to compute the grid weights without explicitly the grid points.

For concreteness, we describe the steps of Rk-means as implemented in the database, noting the additional
speedups we can get over the description in Algorithm 1.
Step 1 (lines 5 and 6). Project X into each subspace Sj and compute the weight w of each point.

In a relational database, the projected sets Xj already exist in normalized form [1], and thus they and
their marginal weights can be computed highly efficiently. This step perfectly aligns with our strategy of
picking the partition S1 ∪ · · · ∪ Sm to match the database schema!
Step 2 (line 7). Find κ centroids in each subspace Sj.

If the subspace Sj corresponds to a single continuous variable, we can solve the one-dimensional k-means
problem quickly and optimally [42], and if the subspace corresponds to a categorical feature, then it is solved
trivially (and optimally) using Theorem 4.4.
Step 3 (lines 9 and 10). Construct the coreset G and the associated weights wgrid.

When constructing G, it is unnecessary to represent any points in G that have zero weight. We use
InsideOut [4] to efficiently compute nonzero weights, and then extract only those grid points in G with
nonzero weight from the database.
Step 4 (line 11). Cluster the weighted coreset G.
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We use a modified version of Lloyd’s weighted k-means that exploits the structure of G and sparse
representation of categorical values to speed up computation

We discuss the optimization and acceleration of Step 4 of the Rk-means implementation in more details
here. Recall that the categorical subspace k-means problem is solved trivially using Theorem 4.4, where we
sort all the weights, and the heaviest k − 1 elements form their own centroid, while the remaining vectors
are clustered together (the “light cluster”).

If Sj is a categorical subspace corresponding to a categorical variable K where Dom(K) = {e1, . . . , eL}.
Without loss of generality, assume w(1e1 ) ≥ · · · ≥ w(1eL), then the centroid of the light cluster is an
L-dimensional vector c = (se)e∈Dom(K)

sei :=

{

0 i ∈ [k − 1]
w(1ei

)
∑L

j=k w(1ej
)

i ≥ k(36)

This encoding is sound and space-inefficient.
Remember also that Step 4 clusters the coreset G using a modified version of Lloyd’s weighted k-means

that exploits the structure of G and sparse representation of categorical values. We show how to improve

the distance computation ‖cj − µj‖2 for sub-space Sj , where cj and µj are the j-th components of a grid
point and respectively of a centroid for G. Since this subspace corresponds to a categorical variable K
with, say, Lj categories, it is mapped into Lj sub-dimensions. Let cj = [s1, . . . , sLj ] and µj = (t1, . . . , tLj ).

Using the explicit one-hot encoding of its categories, we would need O(Lj) time to compute ‖cj − µj‖2 =
∑

ℓ∈[Lj]
(sℓ − tℓ)2. We can instead achieve O(1) time as shown next. There are k distinct values for cj by

our coreset construction, each represented by a vector of size Lj with one non-zero entry for k − 1 of them
and Lj − k + 1 non-zero entries for one of them.

If cj = 1e is an indicator vector for some element e ∈ K (e is one of the k − 1 heavy categories), then

‖cj − µj‖2 = ‖1e − µj‖2 = 1− 2te + ‖µj‖2 .(37)

If cj is a light cluster centroid,

‖cj − µj‖2 = ‖cj‖2 + ‖µj‖2 − 2 〈cj ,µj〉 .(38)

In (37), by pre-computing ‖µj‖2 we only spend O(1)-time per heavy element e. In (38), by also pre-computing

‖cj‖2 and 〈cj ,µj〉, and by noticing that cj is (Lj−k+1)-sparse, we spend O(Lj −k)-time here. Overall, we

spend time O(Lj) for computing ‖cj − µj‖2 per categorical dimension, modulo the precomputation time.
Step 4 thus requires O(|G|mk+∑

j∈[m] Ljk) = O(|G|mk+Dkm) per iteration, whereas a generic approach

would take time O(
∑

j∈[m] |G|kLj) = O(|G|Dkm). Our modified weighted k-means algorithm thus saves a

factor proportional to the total domain sizes of the categorical variables, which may be as large as D.

4.4. Runtime analysis. We compare Rk-means to the standard setting of first extracting the matrix X

from the database and then perform clustering on X directly. The precise runtime statement requires
defining a few parameters such as “fractional hypertree width” and “fractional edge cover number” of the
FEQ, which we briefly covered in Section 2.1. Hence, we state the main thrust of our runtime result:

Theorem 4.7. There are classes of feature extraction queries (FEQs) for which the runtime of Rk-means
is asymptotically less than |X|, and the ratio between |X| and the runtime of Rk-means can be a polynomial
in N , the size of the largest input relation.

Proof of Theorem 4.7. Let N denote the maximum number of tuples in any input relation of the FEQ, |X|
the number of tuples in the data matrix, fhtw the fractional hypertree width of the FEQ t the number of
iterations of Lloyd’s algorithm, d denote the number of features pre-one-hot encoding, r number of input
relations to the FEQ, D the real dimensionality of the problem after one-hot-encoding.

We analyze the time complexity for each of the four steps of the Rk-means algorithm.
Step 1 projects X into each subspace Sj and compute the total weight of each projected point:

∀j ∈ [d] : wj(xSj ) :=
∑

x[d]\{Sj}

∏

F∈E

RF (xF )(39)
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Retailer Favorita Yelp
Relations 5 6 6
Attributes 39 15 25
One-hot Enc. 95 1470 1617
# Rows in D 84M 125M 8.7M
Size of D 1.5GB 2.5GB 0.2GB
# Rows in X 84M 127M 22M
Size of X 18GB 7GB 2.4GB

# Rows in Coreset G

κ = 5 1.43M 14.94K 2.69M
κ = 10 9.58M 85.88K 11.71M
κ = 20 38.16M 632.5K 11.89M
κ = 50 73.75M 7.87M 12.46M

Table 1. Statistics for the input database D, data matrix X, and coresets G for the three dataset.

Each of the d FAQs (39) in Step 1 can be computed in time Õ(rd2N fhtw) using InsideOut, as we have reviewed
in Section 2.1.

In Step 2, the optimal clustering in each dimension takes time Õ(Lj) for each categorical variable j (whose
domain size is Lj, and O(kN2) for each continuous variable, with an overall runtime of O(kdN2).

Step 3 constructs G, whose size is bounded by |X| and by the FD result of Theorem 4.6. In practice, this
number can be much smaller since we skip the data points whose weights are zero. To perform this step we
construct a tree decomposition of FEQ with with equal fhtw (this step is data-independent, only dependent
on the size of FEQ). Then, from each value xj of an input variable Xj , we determine its centroid c(xj) which
was computed in step 2. By conditioning on combinations of (c1, . . . , cj), we can compute wgrid one for each

combiation in Õ(dN fhtw)-time, for a total run time of Õ(rd|G|N fhtw).
Step 4 – as analyzed in Section 4.4 – clusters G in time O((|G|+D)kmt), where t is the number of iterations

of k-means used in Step 4. The most expensive computation is due to the one-dimensional clustering for the
continuous variables and the computation of the coreset.

To compare the total runtime with |X|, we only need to note that |X| can be as large as Nρ∗

, where ρ∗ is
the fractional edge covering number of the FEQ’s hypergraph [32]. Depending on the query, ρ∗ is always at
least 1, and can be as large as the number of features d. Furthermore, there are classes of queries where fhtw

is bounded by a constant, yet ρ∗ is unbounded [30]. This means, for classes of FEQs where ρ∗ > max{fhtw, 2}
the ratio between |X| and Rk-means’s runtime will be Õmega(Nρ∗−max{fhtw,2}/t), which is unbounded. �

The key insight to read from this theorem is that Rk-means can, in principle, run faster than simply
exporting the data matrix, without even running any clustering algorithm (be it sampling-based, streaming,
etc.). Of course, the result only concerns a class of FEQs “on paper”. Section 5 examines real FEQs, which
also demonstrate Rk-means’s runtime superiosity.

For reference, we compare the asymptotic runtime of Rk-means to the standard implementation of Lloyd’s
algorithm. The standard implementation contains two steps: (1) compute the one-hot-encoded data matrix

X, and (2) run Lloyd’s algorithm on X. The first step, materializing X, takes time Õ(rd2N fhtw +D|X|).
The second step, running Lloyd algorithm, takes time Õ(tkD|X|), as is well known. Thus, the standard

approach takes time Õ(rd2N fhtw + tkD|X|).

5. Experimental results

We empirically evaluate the performance of Rk-means on three real datasets for three sets of experiments:
(1) we break down and analyze the performance of each step in Rk-means; (2) we benchmark the performance
and approximation of Rk-means against mlpack [13] (v. 3.1.0), a fast C++ machine learning library; and
(3) we evaluate the performance and approximation of Rk-means for setting κ < k; i.e., different number of
clusters for Steps 2 and 4.
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The experiments show that the coresets of Rk-means are often significantly smaller than the data matrix.
As a result, Rk-means can scale easily to large datasets, and can compute the clusters with a much lower
memory footprint than mlpack. When κ = k, Rk-means is orders-of-magnitude faster than the end-to-end
computation for mlpack—up to 115×. Typically, the approximation level is very minor. In addition, setting
κ < k can lead to further performance speedups with only a moderate increase in approximation, giving over
200× speedup in some cases.

Experimental Setup. We prototyped Rk-means as part of an engine designed to compute multiple
FAQ expressions efficiently. Rk-means is implemented in multithreaded C++11 and compiled with -O3

optimizations; this makes mlpack a comparable implementation. All experiments were performed on an
AWS x1e.8xlarge system, which has 1 TiB of RAM and 32 vCPUs. All relations given were sorted by their
join attributes.

To construct the data matrix that forms the input to mlpack, we use PostgreSQL (psql) v. 10.6 to evaluate
the FEQ. The seminal k-means++ algorithm [7] is used for initializating the k-means cluster. We run Rk-
means and mlpack + psql five times and report the average approximation and runtime. The timeout for all
experiments was set to six hours (21,600 seconds) per trial. Our runtime results omit data loading/saving
times. Note that for mlpack + psql, psql must export X to disk, and then mlpack must then read it from
disk. Rk-means has no need to do this, and thus the runtime numbers are skewed in mlpack’s favor. This
skew may be significant: loading and saving a large CSV file may take hours in some cases.

Datasets. We use three real datasets: (1) Retailer is used by a large US retailer for sales forecasting;
(2) Favorita [17] is a public dataset for retail forecasting; and (3) Yelp is from the public Yelp Dataset
Challenge [46] and used to predict users’ ratings of businesses. Table 1 presents key statistics for the three
datasets, including the size of data matrix X and the coreset G for each dataset and different κ-values. |G|
is highly data dependent. For Favorita, G is orders-of-magnitude smaller than the data matrix. For Retailer,
when k = 20 and k = 50, |G| approaches |X|, but Rk-means is still able to provide a speedup. Additional
dataset details are given below.

Retailer has five relations: Inventory stores the number of inventory units for each date, location, and
stock keeping unit (sku); Location keeps for each store: its zipcode, the distance to the closest competitors,
and the type of the store; Census provides 14 attributes that describe the demographics of a given zipcode,
including population size or average household income; Weather stores statistics about the weather condition
for each date and store, including the temperature and whether it rained; Items keeps track of the price,
category, subcategory, and category cluster of each sku.

Favorita has six relations: Sales stores the number of units sold for items for a given date and store, and
an indicator whether or not the unit was on promotion at this time; Items provides additional information
about the skus, such as the item class and price; Stores keeps additional information on stores, like the city
they are located it; Transactions stores the number of transaction for each date and store; Oil provides the
oil price for each date; and Holiday indicates whether a given day is a holiday. The original dataset gave the
units_sold attribute with a precision of three decimals places. This resulted in a very many distinct values
for this attribute, which has a significant impact on the Step 2 of the Rk-means algorithm. We decreased
the precision for this attribute to two decimal places, which decreases the number of distinct values by a
factor of four. This modification has no effect on the final clusters or their accuracy.

Yelp has five relations: Review gives the review rating that a user gave to a business and the date of the
review; User provides information about the users, including how many reviews the made, when they join,
and how many fans they have; Business provides information about the businesses that are reviewed, such
as their location and average rating; Category provide information about the categories, i.e. Restaurant,
and respectively attributes of the business, Attributes is an aggregated relation, which stores the number of
attributes (i.e., open late) that have been assigned to a business. A business can be categorized in many
ways, which is the main reason why the size of the join is significantly larger than the underlying relations.

Breakdown of Rk-means. Figure 3 shows the time it takes Rk-means to cluster the three datasets for
different values of k with κ = k. The total time is broken down into the four steps of the algorithm from
Section 4. We provide the time it takes psql to compute X as reference (gray bar). In many cases, Rk-means
can cluster Retailer and Favorita faster than it takes psql to even compute the data matrix. The relative
performance of the four steps is data dependent. For Retailer, most of the time is spent on constructing G

in Step 3, which is relatively large. For Favorita, however, Step 2 takes the longest, since it contains one
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Figure 3. Breakdown of the compute time of Rk-means for each step of the algorithm with
κ = k. The time to compute X is provided as reference.

Retailer k = 5 k = 10 k = 20 k = 50 k=20, κ = 10 k = 50, κ = 20

Compute X (psql) 175.47 175.47 175.47 175.47 175.47 175.47
Clustering (mlpack) 65.41 158.81 385.67 1,453.88 385.67 1,453.88

Rk-means 15.66 54.59 230.17 650.20 63.51 344.31

Relative Speedup 15.38× 6.12× 2.44× 2.51× 8.84× 4.73×
Relative Approx. 0.20 0.08 0.03 0.00 0.03 0.02

Favorita k = 5 k = 10 k = 20 k = 50 k=20, κ = 10 k = 50, κ = 20

Compute X (psql) 156.86 156.86 156.86 156.86 156.86 156.86
Clustering (mlpack) 1,002.54 6,449.32 11,794.49 >21,600.00 11,794.49 >21,600

Rk-means 27.95 57.72 118.36 334.65 57.65 120.77

Relative Speedup 41.49× 114.59× 100.98× >64.55× 207.30× >178.86×
Relative Approx. 2.99 0.35 0.12 – 1.93 –

Yelp k = 5 k = 10 k = 20 k = 50 k=20, κ = 10 k = 50, κ = 20

Compute X (psql) 33.83 33.83 33.83 33.83 33.83 33.83
Clustering (mlpack) 210.59 640.43 2,107.83 11,474.24 2,107.83 11,474.24

Rk-means 43.37 107.71 195.22 405.11 114.34 241.34

Relative Speedup 5.64× 6.26× 10.97× 28.41× 18.73× 47.68×
Relative Approx. 0.37 0.26 0.13 0.05 0.27 0.20

Table 2. End-to-end runtime and approximation comparison of Rk-means and mlpack on
each dataset. The first four columns use different κ = k values; the last two show results
for setting κ < k.

continuous variable with many distinct values, and the DP algorithm for clustering runs in time quadratic
in the number of distinct values. The runtime for Favorita could be improved by clustering this dimension
with a different k-means algorithm instead, but this may increase the approximation.

Comparison with mlpack. The left columns of Table 2 compares the runtime and approximation of
Rk-means against mlpack on the three datasets for different k values with κ = k. The approximation is
given relative to the objective value obtained by mlpack. Speedup is given by comparing the end-to-end
performance of Rk-means and mlpack (ignoring disk I/O time), which for mlpack includes the time needed
by psql to materialize X. Overall, Rk-means often outperforms even just the clustering step from mlpack,
and when end-to-end computation is considered, Rk-means gives up to 115× speedup. mlpack timed out
after six hours for Favorita with k = 50. In addition, Rk-means has a much smaller memory footprint than
mlpack: for instance, on the Favorita dataset with k = 20, mlpack uses over 900GiB of RAM to cluster the
dataset, whereas Rk-means only requires 18Gib. In our simulations, the approximation level is moderate,
and consistently well below the 9-approximation bound from Theorem 3.4.

Setting κ < k for Step 2. We next evaluate the effect of setting κ to a smaller value than the number
of clusters k. This exploits the speed/approximation tradeoff: smaller κ helps reduce the size of G, at the
cost of more approximation. Table 2 presents for each dataset the results for setting k = 20,κ = 10 and
k = 50,κ = 20, and compares them to the relative performance and approximation over computing k clusters
in mlpack.
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By setting κ < k, Rk-means can compute the k clusters up to 208× faster than mlpack and 3.6× faster
than Rk-means with κ = k, while the relative approximation remains moderate. Our results are data
dependent—but as queries and databases scale, our speedups will be even more significant.

6. Conclusion

We introduce Rk-means, a method to construct k-means clustering coresets on relational data directly from
the database. Rk-means gives a provably good clustering of the entire dataset, without ever materializing
the data set; this also yields asymptotic improvements in running time. Experimentally, we observe that
the coreset has size up to 180x smaller than the size of the data matrix and this compression results in
orders-of-magnitude improvements in the running time, while still providing empirically good clusterings.
Although our work here primarily focuses on k-means clustering, we believe our construction of grid coresets
and the accompanied theory may be useful for other unsupervised learning tasks and plan to explore such
possibilities in future work.
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